• Title/Summary/Keyword: 4족 보행

Search Result 164, Processing Time 0.029 seconds

A Study on the Development of TCMV (TCMV(Tactical Command Monitoring Vehicle) 차량 개발에 관한 연구 )

  • Son, Eun-Su;Choi, Doo-Chan;Kim, Gyeong-Min
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.83-84
    • /
    • 2023
  • 4족 보행 로봇을 투입하기 위해서는 로봇을 운반할 수 있는 차량이 필요하며 특히 본 연구에서는 군용 작전 지휘 차량을 벤치 마킹하여 화재 진압용 TCMV(Tactical Command Monitoring Vehicle)를 개발하고자 하였다. TCMV를 통해 4족보행 로봇이 화재 현장에 진압할 수 있도록 시나리오를 개발하고 있으며, 아울러 TCMV의 요구사양을 정의 하기 위하여 소방관을 중심으로 의견을 수렴하여 화재 진압의 전략을 개발하고 있다. 추후 TCMV에 적합한 차량과 각종 모니터링 시스템을 구축해 4족 보행 로봇의 화재 진압 기능과 구조 기능을 극대화 하며 새로운 화재 진압 전술이 될 것으로 기대된다.

  • PDF

Construction of Distributed Web Development Environment using 4-Legged Robot and MSRS (4족 보행로봇 및 MSRS를 이용한 분산 웹 개발환경 구축)

  • Yang, Tae-Kyu;Seo, Yong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1964-1972
    • /
    • 2009
  • This paper proposed a distributed web environment for developing robot services using a 4-legged robot and MSRS. The proposed development environment of the robot services enabled a high-level complicated robot application to operate in a distributed web environment by implementing robot functions as services which can be run on network nodes using Microsoft MSRS. The environment has been also implemented using a 4-legged robot, Genibo as a robot platform. In experiment, we showed the developed robot services are enable to be executed and configured dynamically and support a remote monitoring in a distributed web environment. Finally the feasibility and the effectiveness of the proposed environment has been verified by creating a robot application using the developed robot services in Visual Program Language which helps student to create a complicated robot application system easily.

A DSP-based Controller for a Small Humanoid Robot (DSP를 사용한 소형 인간형 로봇의 제어기)

  • Cho Jeong-San;Sung Young-Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.191-197
    • /
    • 2005
  • Biped walking is the main feature of a humanoid robot. In a biped walking robot, there are many actuators to be controlled and many sensors to be interfaced. In this paper, we propose a DSP-based controller for a miniature biped walking robot with 21 RC servo motors. The proposed controller has a hierarchical structure; a host PC, a DSP-based main controller, and an auxiliary controller with an FPGA chip. The host PC generates and transmits the robot walking data for given walking parameters such as stride, walking period, etc. The main controller implemented with a TMS320LF2407A controls 21 RC servo motors via the auxiliary controller. We also perform some experiments for balancing motion and walking on a slope terrain with interfacing a 2-axis acceleration sensor and a TMS320LF2407A.

  • PDF

Walking test of a quadruped robot with weight balancing oscillator (무게평형진자를 가진 4족 로봇의 보행 실험)

  • 유재명;오상관;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.446-449
    • /
    • 2002
  • Quadruped walking robot requires dynamic control to keep its stability in high speed walking. To keep its walking stability by control of only legs' Joint angle lowers energy efficiency. It is known that an animal or a human use the moving of the mass center of one's upper body to keep the stability. We have developed a quadruped walking robot with weight balancing oscillator that have high energy efficiency. In this study, walking tests are performed for the robot to verify the validity of the weight balancing oscillator.

  • PDF

Experimental Study on Motion Generation and Control of Quadruped Robot (4 족 견마형 로봇의 동작 생성 및 제어에 관한 실험적 연구)

  • Ko, Kwang-Jin;Yu, Seung-Nam;Lee, Hee-Don;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.843-848
    • /
    • 2007
  • Quadruped robot is very useful mechanism for a various area. Recently, home entertainment and military robots adapted quadruped platform and useful function have been introduced. Our goal is the development of quadruped robot locomotion for any type of ground included to sloping one and irregular terrain. This paper, as a first step, deals with design and construction of quadruped robot walking on the flat ground. The most important factor of quadruped robot is stability of locomotion. At first, we introduce the developed quadruped robot based on dynamic simulation and experimental study of general gait algorithm. Finally, propose unique locomotion proper to our mechanism. Future work of this study is the performance test and analysis on the ground of various conditions and proposes the improved mechanism and gait algorithm.

  • PDF

A Study on the Footholds Selection for Quadruped Walking Vehicle (4족 보행 로봇의 착지점 선정에 관한 연구)

  • 정경민;박윤창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.7-10
    • /
    • 2000
  • Inadequate footholds selection may result in deadlock state where the walking vehicle can not anymore to the desired direction. This paper concerns about the footholds selection for quadruped v, vehicle to walk with the leg lifting sequence of crawl gait which is desired for straight motion. supporting states for lifting a leg are defined and the proper supporting condition for quadruped c: also proposed. When selecting a footholds of swing leg within the proposed footholds searching are; supporting states after the swing legs are placed, satisfy the proper supporting condition. So it can I for quadruped to execute continuous walking with the lifting sequence of crawl gait.

  • PDF

A Comparative Study between GP and CPG Methods of Gait Generation for Quadruped Robots (4족 보행로봇의 걸음새 생성에 대한 GP와 CPG 기법의 비교 연구)

  • Seo, Ki-Sung;Hyun, Soo-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.151-152
    • /
    • 2009
  • 본 논문에서는 진화연산 기법중 GP(Genetic Programming)를 이용한 관절좌표계 상에서의 걸음새 자동생성 기법과 생물체의 신경발생 신호 원리를 이용한 CPG(Central Pattern Generator) 기법을 구현한다. 바이올로이드로 구성된 4족 보행로봇에 대하여 Webots기반의 ODE 시뮬레이션을 통해 접근 기법들에 대한 최적화를 수행하고 결과를 비교 분석한다. 그리고 구해진 시뮬레이션과 결과를 실제 로봇에 대해서 각 동작을 실행시켜 보면서 CPG와 GP 기반 걸음새 방식 실제적인 성능 및 특성도 고찰한다.

  • PDF

Proposal of Virtual Sensor Technique for Quadruped Robot using Backpropagation Neural Network (Back propagation 신경망이론을 이용한 4 족 보행로봇의 가상 센서 기술 제안)

  • Kim, Wan-Soo;Yu, Seung-Nam;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.894-899
    • /
    • 2008
  • Measured sensor datum from a quadruped robotics is commonly used for recognizing physical environment information which controls the posture of robotics. We can advance the ambulation with this sensed information and need to synthesize various sensors for obtaining accurate data, but most of these sensors are expensive and require excessive load for the operation. Those defects can be serious problem when it comes to the prototype's practicality and mass production, and maintenance of the system. This paper suggests virtual sensor technology for avoiding previous defects and presents ways to apply a theory to a walking robotics through virtual sensor information which is trained with several kinds of actual sensor information from the prototype system; the general algorithm is initially based on the neural network theory of back propagation. In specific, we verified a possibility of replacing the virtual sensor with the actual one through a reaction force measurement experiment.

  • PDF

A Study on the Walking Stability of the Quadruped Robot with WBO (균형추를 장착한 4족 로봇의 보행 안정성에 관한 연구)

  • Choi Gi Hun;Kim Young Tark;Yoo Jae Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.118-126
    • /
    • 2005
  • There are many types of walking robots in the world. For dynamic walking of the robots it is necessary to keep its dynamic stability. The dynamic stability is influenced by the position of ZMP (zero moment point). In this paper we study the control of the ZMP position of walking robot. For experiment we developed a quadruped robot and analyzed the dynamic stability of the robot. Developed robot has 2 joints at each leg and WBO (weight balancing oscillator) on the body of the robot. The WBO is designed to move linearly from side to side when the robot walks dynamically. Walking test was performed to verify the validity of the proposed methods. Especially we showed that the dynamic stability of the robot can be improved without sacrifice of the walking speed by control the WBO.

Four-legged walking robot for school security using Lidar SLAM (라이다 SLAM을 이용한 교내경비용 4족 로봇)

  • Lee, Ki-Hyeon;Chung, Chang-Hyun;Ahn, Seung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.740-742
    • /
    • 2022
  • 본 프로젝트에서는 다양한 지형에 구애받지 않고 전천후로 활동할 수 있는 로봇을 구현하기 위해 바퀴형 로봇 보다는 4족 보행 로봇을 채택하여 지형 극복에 더 유리하고 안정적인 자세 제어와 보행을 할 수 있는 동시에 LiDAR 센서와 카메라 모듈을 이용한 SLAM(동시적 위치 추정 및 지도작성)과 원격으로 사물과 사람들을 파악할 수 있는 원격조종 탐사로봇을 개발하고자 한다.