• Title/Summary/Keyword: 3d a simulator

Search Result 595, Processing Time 0.029 seconds

FinFET Gate Resistance Modeling and Optimization (FinFET 게이트 저항 압축 모델 개발 및 최적화)

  • Lee, SoonCheol;Kwon, Kee-Won;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.30-37
    • /
    • 2014
  • In this paper, the compact model for FinFET gate resistance is developed. Based on the FinFET geometry and material, the value of the gate resistance is extracted by Y-parameter analysis using 3D device simulator, Sentaurus. By dividing the gate resistance into horizontal and vertical components, the proposed gate resistance model captures the non-linear characteristics. The proposed compact model reflects the realistic gate structure which has two different materials (Tungsten, TiN) stacked. Using the proposed model, the number of fins for the minimum gate resistance can be proposed based on the variation of gate geometrical parameters. The proposed gate resistance model is implemented in BSIM-CMG. A ring-oscillator is designed, and its delay performance is compared with and without gate resistance.

Minimization of Sulfur Dioxide Gas Emission by Process Optimization of Sulfuric Acid Plants (공정최적화에 의한 황산공장의 이산화황가스 배출 최소화)

  • Cho Byoung-Hak;Song Kwang Ho;Kim In-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.70-76
    • /
    • 1999
  • Because of the tight pollution control of $SO_2$ emission, sulfuric acid manufacturers have been interested in the operation with the highest possible conversion efficiency. In this work, the design criteria and operating conditions of the catalytic converter were investigated for maximum conversion efficiency and minimum $SO_2$ emission by parametric analysis and process optimization for the existing acid plants. The Double Converter/Double Absorber(DC/DA) process was investigated by varying $SO_2$ compositions of feed gas, pressures and temperatures of layers of the converter and the depth of the catalyst beds. In order to evaluate the process, a computer simulator for sulfuric acid plants has been developed. The results by process optimization could be used for the converter design and operating conditions with highest conversion efficiency.

  • PDF

Dose perturbation measurements during the liver treatment with internal organ motion: Mathematical modeling and Experimental simulation (호흡에 의한 내부 움직임의 영향이 있는 간에서의 실험적 선량 측정)

  • Chung, Jin-Bum;Kim, Yon-Lae;Chung, Won-Kyun;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.115-118
    • /
    • 2004
  • Respiratory motion in the thorax and abdomen is an important limiting factor in high-precision radiation therapy. The lung tumor and tumor(pancreas, stomach) in abdomen therefore are internal motion due to breathing. We will perform to measurement of dose distributions for these moving tumors. In preliminary study, we investigated displacement of moving tumor such as liver, lung tumor in abdomen with previously reported papers. With reference data, internal movements of tumor are displayed with phantom and moving control device(MCD), which appear three dimension (3-D) motion such as x, y and z axis. These devices are used to access dose delivered in tumor with and without internal motion. The MCD and phantom were used to evaluate a delivered dose under similar condition, although there are not same internal tumor motion. In future, we will obtain the exact evaluation of dose if improved in programed software of moving control device and measure precise internal motion using image modality such as fluoroscopy, simulator in based on this study.

  • PDF

A Method for Reducing Path Recovery Overhead of Clustering-based, Cognitive Radio Ad Hoc Routing Protocol (클러스터링 기반 인지 무선 애드혹 라우팅 프로토콜의 경로 복구 오버헤드 감소 기법)

  • Jang, Jin-kyung;Lim, Ji-hun;Kim, Do-Hyung;Ko, Young-Bae;Kim, Joung-Sik;Seo, Myung-hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.280-288
    • /
    • 2019
  • In the CR-enabled MANET, routing paths can be easily destroyed due to node mobility and channel unavailability (due to the emergence of the PU of a channel), resulting in significant overhead to maintain/recover the routing path. In this paper, network caching is actively used for route maintenance, taking into account the properties of the CR. In the proposed scheme, even if a node detects that a path becomes unavailable, it does not generate control messages to establish an alternative path. Instead, the node stores the packets in its local cache and 1) waits for a certain amount of time for the PU to disappear; 2) waits for a little longer while overhearing messages from other flow; 3) after that, the node applies local route recovery process or delay tolerant forwarding strategy. According to the simulation study using the OPNET simulator, it is shown that the proposed scheme successfully reduces the amount of control messages for path recovery and the service latency for the time-sensitive traffic by 13.8% and 45.4%, respectively, compared to the existing scheme. Nevertheless, the delivery ratio of the time-insensitive traffic is improved 14.5% in the proposed scheme.

Clinical Experience of Three Dimensional Conformal Radiation Therapy for Non-Small Cell Lung Cancer (비소세포성 폐암에서 3차원 입체조형 방사선 치료 성적)

  • Choi Eun Kyung;Lee Byong Yong;Kang One Chul;Nho Young Ju;Chung Weon Kuu;Ahn Seung Do;Kim Jong Hoon;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.265-274
    • /
    • 1998
  • Purpose : This prospective study has been conducted to assess the value of three dimensional conformal radiation therapy (3DCRT) for lung cancer and to determine its potential advantage over current treatment approaches. Specific aims of this study were to 1) find the most ideal 3DCRT technique 2) establish the maximum tolerance dose that can be delivered with 3DCRT and 3) identify patients at risk for development of radiation pneumonitis. Materials and Methods : Beginning in Nov. 1994, 95 patients with inoperable non-small cell lung cancer (stage I; 4, stage II; 1, stage IIIa; 14, stage IIIb; 76) were entered onto this 3D conformal trial Areas of known disease and elective nodal areas were initially treated to 45 Gy and then using 3DCRT technique 65 to 70 Gy of total dose were delivered to the gross disease. Sixty nine patients received 65 Gy of total dose and 26 received 70 Gy Seventy eight patients (82.1$\%$) also received concurrent MVP chemotherapy. 3DCRT plans were compared with 2D plans to assess the adequacy of dose delivery to target volume, dose volume histograms for normal tissue, and normal tissue complication Probabilities (NTCP). Results : Most of plans (78/95) were composed of non-coplanar multiple (4-8) fields. Coplanar segmented conformal therapy was used in 17 pateints, choosing the proper gantry angle which minimize normal lung exposure in each segment. 3DCRT gave the full dose to nearly 100$\%$ of the gross disease target volume in all patients. The mean NTCP for ipsilateral lung with 3DCRT (range; 0.17-0.43) was 68$\%$ of the mean NTCP with 2D treatment planning (range; 0.27-0.66). DVH analysis for heart showed that irradiated volume of heart could be significantly reduced by non-coplanar 3D approach especially in the case of left lower lobe lesion. Of 95 patients evaluable for response, 75 (79$\%$), showed major response including 25 (26$\%$) with complete responses and 50 (53$\%$) with partial responses. One and two rear overall survivals of stage III patients were 62.6$\%$ and 35.2$\%$ respectively. Twenty percent (19/95) of patients had pneumonitis; Eight patients had grade 1 pneumonitis and 11 other patients had grade 2. Comparison of the average of NTCP for lung showed a significant difference between patients with and without radiation pneumonitis. Average NTCP for Patients without complication was 62$\%$ of those with complications. Conclusions : This study showed that non-coplanar multiple fields (4-8) may be one of the ideal plans for 3DCRT for lung cancer. It also suggested that 3DCRT may provide superior delivery of high dose radiation with reduced risk to normal tissue and that NTCP can be used as a guideline for the dose escalation.

  • PDF

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.

Schottky barrier overlapping in short channel SB-MOSFETs (Short Channel SB-FETs의 Schottky 장벽 Overlapping)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF

Numerical analysis of FEBEX at Grimsel Test Site in Switzerland (스위스 Grimsel Test Site에서 수행된 FEBEX 현장시험에 대한 수치해석적 연구)

  • Lee, Changsoo;Lee, Jaewon;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.359-381
    • /
    • 2020
  • Within the framework of DECOVALEX-2019 Task D, full-scale engineered barriers experiment (FEBEX) at Grimsel Test Site was numerically simulated to investigate an applicability of implemented Barcelona basic model (BBM) into TOUGH2-MP/FLAC3D simulator, which was developed for the prediction of the coupled thermo-hydro-mechanical behavior of bentonite buffer. And the calculated heater power, temperature, relative humidity, total stress, saturation, water content and dry density were compared with in situ data monitored in the various sections. In general, the calculated heater power and temperature provided a fairly good agreement with experimental observations, however, the difference between power of heater #1 and that of heater #2 could not captured in the numerical analysis. It is necessary to consider lamprophyre with low thermal conductivity around heater #1 and non-simplified installation progresses of bentonite blocks in the tunnel for better modeling results. The evolutions and distributions of relative humidity were well reproduced, but hydraulic model needs to be modified because the re-saturation process was relatively fast near the heaters. In case of stress evolutions due to the thermal and hydraulic expansions, the computed stress was in good agreement with the data. But, the stress is slightly higher than the measured in situ data at the early stage of the operation, because gap between rock mass and bentonite blocks have not been considered in the numerical simulations. The calculated distribution of saturation, water content, and dry density along the radial distance showed good agreement with the observations after the first and final dismantling. The calculated dry density near the center of the FEBEX tunnel and heaters were overestimated compared with the observations. As a result, the saturation and water content were underestimated with the measurements. Therefore, numerical model of permeability is needed to modify for the production of better numerical results. It will be possible to produce the better analysis results and more realistically predict the coupled THM behavior in the bentonite blocks by performing the additional studies and modifying the numerical model based on the results of this study.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

A Study on Significance Testing of Driver's Visual Behavior due to the VMS Message Display Forms on the Road (도로상 VMS 표출방식별 운전자 유의성 검증에 관한 연구)

  • Kum, Ki-Jung;Son, Young-Tae;Bae, Deok-Mo;Son, Seung-Neo
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.151-162
    • /
    • 2005
  • Variable Message Sign (VMS), which provides drivers with direct information about state of traffic congestion and for prevent an accident, is the most effective method among the methods of providing information in Advanced Transportation Management System. Currently establishment and the VMS which is operated foundation lets in Guidelines on the use of Variable message sign (a book of the VMS) of 1999 November the Ministry Construction & Transportation, these contents mean main viewpoint on physical part such as message special quality variable (font, character size and line space, word interval) and position mainly among standard about establishment in general. But, it is true that using without effect verification on the character of VMS display and that using mode of stationary-centered. In this paper, it executed significance test to effort verification on the character of VMS display for more practical and effective information transmission based on the driver viewpoint For the researches; develop 3D-Simulation, select characteristics of driver's visual cognition behavior (the conspicuity, the legibility and the comprehensibility), evaluation each issue (day or night, 80km/h or 100km/h). Especially, that used the Eye Marker Recorder to measure of reading-time (legibility) thus, confirmed objectivity and reduce an observational error. The results showed that the conspicuity is Flashing> Stationary>Scroll. The legibility is not deference that Flashing between stationary form. Also the comprehensibility result showed that Flashing> Stationary>Stroll form.

  • PDF