• Title/Summary/Keyword: 3d Ray Tracing

Search Result 118, Processing Time 0.332 seconds

Construction of 3D Earth Optical Model for Earth Remote Sensing (Amon-Ra) Instrument at L1 Halo Orbit

  • Ryu, Dong-Ok;Seong, Se-Hyun;Hong, Jin-Suk;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • We present construction of 3D Earth optical Model for in-orbit performance prediction of L1 halo orbiting earth remote sensing instrument; the Albedo Monitor and Radiometer (Amon-Ra) using Integrated Ray Tracing (IRT) computational technique. The 3 components are defined in IRT; 1) Sun model, 2) Earth system model (Atmosphere, Land and Ocean), 3)Amon-Ra Instrument model. In this report, constructed sun model has Lambertian scattering hemisphere structure. The atmosphere is composed of 16 distributed structures and each optical model includes scatter model with both reflecting and transmitting direction respond to 5 deg. intervals of azimuth and zenith angles. Land structure model uses coastline and 5 kinds of vegetation distribution data structure, and its non-Lambertian scattering is defined with the semi-empirical "parametric kernel method" used for MODIS (NASA) missions. The ocean model includes sea ice cap with the sea ice area data from NOAA, and sea water optical model which is considering non-Lambertian sun-glint scattering. The IRT computation demonstrate that the designed Amon-Ra optical system satisfies the imaging and radiometric performance requirement. The technical details of the 3D Earth Model, IRT model construction and its computation results are presented together with future-works.

  • PDF

SAR(Synthetic Aperture Radar) 3-Dimensional Scatterers Point Cloud Target Model and Experiments on Bridge Area (영상레이더(SAR)용 3차원 산란점 점구름 표적모델의 교량 지역에 대한 적용)

  • Jong Hoo Park;Sang Chul Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.1-8
    • /
    • 2023
  • Modeling of artificial targets in Synthetic Aperture radar (SAR) mainly simulates radar signals reflected from the faces and edges of the 3D Computer Aided Design (CAD) model with a ray-tracing method, and modeling of the clutter on the Earth's surface uses a method of distinguishing types with similar distribution characteristics through statistical analysis of the SAR image itself. In this paper, man-made targets on the surface and background clutter on the terrain are integrated and made into a three-dimensional (3D) point cloud scatterer model, and SAR image were created through computational signal processing. The results of the SAR Stripmap image generation of the actual automobile based SAR radar system and the results analyzed using EM modeling or statistical distribution models are compared with this 3D point cloud scatterer model. The modeling target is selected as an bridge because it has the characteristic of having both water surface and ground terrain around the bridge and is also a target of great interest in both military and civilian use.

Video Augmentation by Image-based Rendering

  • Seo, Yong-Duek;Kim, Seung-Jin;Sang, Hong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.147-153
    • /
    • 1998
  • This paper provides a method for video augmentation using image interpolation. In computer graphics or augmented reality, 3D information of a model object is necessary to generate 2D views of the model, which are then inserted into or overlayed on environmental views or real video frames. However, we do not require any three dimensional model but images of the model object at some locations to render views according to the motion of video camera which is calculated by an SFM algorithm using point matches under weak-perspective (scaled-orthographic) projection model. Thus, a linear view interpolation algorithm is applied rather than a 3D ray-tracing method to get a view of the model at different viewpoints from model views. In order to get novel views in a way that agrees with the camera motion the camera coordinate system is embedded into model coordinate system at initialization time on the basis of 3D information recovered from video images and model views, respectively. During the sequence, motion parameters from video frames are used to compute interpolation parameters, and rendered model views are overlayed on corresponding video frames. Experimental results for real video frames and model views are given. Finally, discussion on the limitations of the method and subjects for future research are provided.

  • PDF

Reverse Design of F-Theta Lens for Compact Laser Scanner (소형 2차원 레이저 스캐너용 F-theta 렌즈 역설계)

  • Choi, Hae Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.213-218
    • /
    • 2017
  • In this study, a reverse design of the F-theta lens was proposed for a 2D scanner in remote welding applications. The curvature and distance of the lens were set as variables, and the focal length of the lens was set as the marginal ray height. The ZEMAX commercial software was used to perform a simulation with unlimited iterations for the optimization process. The target value was optimized using the internal Merit function with the weight factors of focal length and spot diameter. The number of lenses was four, and the focal length obtained from the results was 135mm that is slightly less than that of the commercial lens, which is set with a focal length of 185 mm. The calculated spot diameters are $1.3{\mu}m$, $6.2{\mu}m$, and $16.1{\mu}m$ for $0^{\circ}$, $12.5^{\circ}$ and $23^{\circ}$ of incident laser beam, respectively. It is expected that an optimized lens design is possible by performing the reverse design of a lens by the ray tracing method.

A Benchmarking on Rendering System for Animation (애니메이션을 위한 렌더링 시스템 동향분석)

  • Lee, C.H.;Choi, J.J.;Lee, E.T.
    • Electronics and Telecommunications Trends
    • /
    • v.14 no.3 s.57
    • /
    • pp.31-43
    • /
    • 1999
  • 본 고에서는 3차원 애니메이션을 위한 렌더링 시스템에 대한 기술동향을 분석한다. 이를 위해 렌더링을 지원하는 상용 애니메이션 소프트웨어들에 대한 최신 동향 및 이들 중 고가와 중저가 시장을 주도하고 있는 Alias/Wavefront Maya와 Kinetix 3D Studio Max를 중심으로 렌더링 기능들을 분석하고 성능평가 한다. 이를 위해 렌더링 기능으로서 Rendering Editor, Material, Lights, Textures, Ray-Tracing 및 Shadow, 카메라 및 기타 등에 대해서 각각의 기능들에 대한 특징 및 성능 등에 대해서 언급한다. 마지막으로 본 고는 두 상용 시스템에 대한 다면체 렌더링 기능별 분류 및 그 성능평가에 대해서 벤치마킹 표로 요약.제시하며 끝을 맺는다.

Long-Distance Plume Detection Simulation for a New MWIR Camera (장거리 화염 탐지용 적외선 카메라 성능 광선추적 수치모사)

  • Yoon, Jeeyeon;Ryu, Dongok;Kim, Sangmin;Seong, Sehyun;Yoon, Woongsup;Kim, Jieun;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.5
    • /
    • pp.245-253
    • /
    • 2014
  • We report a realistic field-performance simulation for a new MWIR camera. It is designed for early detection of missile plumes over a distance range of a few hundred kilometers. Both imaging and radiometric performance of the camera are studied by using real-scale integrated ray tracing, including targets, atmosphere, and background scene models. The simulation results demonstrate that the camera would satisfy the imaging and radiometric performance requirements for field operation.

Real-time 3D Audio Downmixing System based on Sound Rendering for the Immersive Sound of Mobile Virtual Reality Applications

  • Hong, Dukki;Kwon, Hyuck-Joo;Kim, Cheong Ghil;Park, Woo-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5936-5954
    • /
    • 2018
  • Eight out of the top ten the largest technology companies in the world are involved in some way with the coming mobile VR revolution since Facebook acquired Oculus. This trend has allowed the technology related with mobile VR to achieve remarkable growth in both academic and industry. Therefore, the importance of reproducing the acoustic expression for users to experience more realistic is increasing because auditory cues can enhance the perception of the complicated surrounding environment without the visual system in VR. This paper presents a audio downmixing system for auralization based on hardware, a stage of sound rendering pipelines that can reproduce realiy-like sound but requires high computation costs. The proposed system is verified through an FPGA platform with the special focus on hardware architectural designs for low power and real-time. The results show that the proposed system on an FPGA can downmix maximum 5 sources in real-time rate (52 FPS), with 382 mW low power consumptions. Furthermore, the generated 3D sound with the proposed system was verified with satisfactory results of sound quality via the user evaluation.

The Prediction and Analysis of the Propagation Characteristics in Indoor Environments Using the SBR/Image Method (SBR 및 영상기법을 이용한 실내 환경의 전파특성 예측과 분석)

  • 손호경;김채영;김성진
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.199-207
    • /
    • 2001
  • In this paper, the technique of prediction and analysis on the characteristics of propagation in indoor environment is presented. This technique needs no reception sphere commonly used in 3D-ray tracing scheme, and thereby it lends us easy code realization. The validity of developed code is verified by comparing with the values of image methods and measurement. The developed technique applied to the structure of rectangular corridor with the iron door and we calculated the path loss for the variation of the iron door angle. The path loss decreased about 15 dB at the distance of30 m from the iron door and the delay spread increased approximately by four times. Based on the computation, we confirmed that indoor propagation in PCS is heavily affected by the iron door in corridor.

  • PDF

Improvement of Canopy Light Distribution, Photosynthesis, and Growth of Lettuce (Lactuca Sativa L.) in Plant Factory Conditions by Using Filters to Diffuse Light from LEDs (LED 식물공장에서 산란 유리 이용에 의한 상추(Lactuca Sativa L.)의 군락 광분포, 광합성 및 생장 향상)

  • Kang, Woo Hyun;Zhang, Fan;Lee, June Woo;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • Plant factories with artificial lights require a large amount of electrical energy for lighting; therefore, enhancement of light use efficiency will decrease the cost of plant production. The objective of this study was to enhance the light use efficiency by using filters to diffuse the light from LED sources in plant factory conditions. The two treatments used diffuse glasses with haze factors of 40% and 80%, and a control without the filter. For each treatment, canopy light distribution was evaluated by a 3-D ray tracing method and canopy photosynthesis was measured with a sealed acrylic chamber. Sixteen lettuces for each treatment were cultivated hydroponically in a plant factory for 28 days after transplanting and their growth was compared. Simulation results showed that the light absorption was concentrated on the upper part of the lettuce canopy in treatments and control. The control showed particularly poor canopy light distribution with hotspots of light intensity; thus the light use efficiency decreased compared to the treatments. Total light absorption was the highest in the control; however, the amount of effective light absorption was higher in treatments than the control, and was highest in treatment using filters with a haze factor of 80%. Canopy photosynthesis and plant growth were significantly higher in all the treatments. In conclusion, application of the diffuse glass filters enhanced the canopy light distribution, photosynthesis, and growth of the plants under LED lighting, resulting in enhanced the light use efficiency in plant factory conditions.

Fluid Flow and Heat Transfer Inside a Solar Chimney Power Plant

  • Gholamalizadeh, Ehsan;Chung, Jae Dong
    • Plant Journal
    • /
    • v.14 no.1
    • /
    • pp.42-46
    • /
    • 2018
  • The flow and heat transfer characteristics inside a solar chimney power plant system are analyzed in this article. 3-D model with the $k-{\varepsilon}$ turbulence closure was developed. In this model, to solve the radiative transfer equation the discrete ordinates radiation model was implemented, using a two-band radiation model. To simulate radiation effects from the sun's rays, the solar ray tracing algorithm was coupled to the calculation via a source term in the energy equation. Simulations were carried out for a system with the geometry parameters of the Manzanares power plant. Based on the numerical results, the velocity and temperature distributions were illustrated and the results were validated by comparing with experimental data of the Manzanares prototype power plant. Moreover, temperature profile of the ground surface of the system was illustrated.

  • PDF