DOI QR코드

DOI QR Code

Improvement of Canopy Light Distribution, Photosynthesis, and Growth of Lettuce (Lactuca Sativa L.) in Plant Factory Conditions by Using Filters to Diffuse Light from LEDs

LED 식물공장에서 산란 유리 이용에 의한 상추(Lactuca Sativa L.)의 군락 광분포, 광합성 및 생장 향상

  • Kang, Woo Hyun (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Zhang, Fan (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, June Woo (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Son, Jung Eek (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 강우현 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 장범 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 이준우 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 손정익 (서울대학교 식물생산과학부 및 농업생명과학연구원)
  • Received : 2015.06.24
  • Accepted : 2016.01.25
  • Published : 2016.02.29

Abstract

Plant factories with artificial lights require a large amount of electrical energy for lighting; therefore, enhancement of light use efficiency will decrease the cost of plant production. The objective of this study was to enhance the light use efficiency by using filters to diffuse the light from LED sources in plant factory conditions. The two treatments used diffuse glasses with haze factors of 40% and 80%, and a control without the filter. For each treatment, canopy light distribution was evaluated by a 3-D ray tracing method and canopy photosynthesis was measured with a sealed acrylic chamber. Sixteen lettuces for each treatment were cultivated hydroponically in a plant factory for 28 days after transplanting and their growth was compared. Simulation results showed that the light absorption was concentrated on the upper part of the lettuce canopy in treatments and control. The control showed particularly poor canopy light distribution with hotspots of light intensity; thus the light use efficiency decreased compared to the treatments. Total light absorption was the highest in the control; however, the amount of effective light absorption was higher in treatments than the control, and was highest in treatment using filters with a haze factor of 80%. Canopy photosynthesis and plant growth were significantly higher in all the treatments. In conclusion, application of the diffuse glass filters enhanced the canopy light distribution, photosynthesis, and growth of the plants under LED lighting, resulting in enhanced the light use efficiency in plant factory conditions.

인공광 식물공장은 조명에 많은 전력이 소요되므로 광이용효율의 향상은 필수적이다. 본 연구에서는 식물공장의 LED 광원에 산란 유리를 사용함으로써 광이용효율을 향상하고자 하였다. 실험에는 Haze factor 40%와 80%의 산란 유리가 적용된 두 가지 처리구와 산란 유리를 사용하지 않은 대조구를 두었다. 3-D 광선추적기법을 이용하여 상추 작물의 군락 광분포를 분석하였으며 군락 광합성률은 밀폐 아크릴 챔버를 이용하여 측정하였다. 각 처리구 별로 16주의 상추를 수경재배 방식으로 28일간 재배하여 생장량을 비교하였다. 시뮬레이션 결과, 모든 처리구에서 작물의 상단부에 광량이 집중되었고 대조구에서 작물 상부에 광량 핫스팟이 발생하며 처리구에 비하여 광이용효율이 감소하였다. 총 광 흡수량은 대조구에서 가장 높았으나 유효 광 흡수량은 처리구에서 더 높았고 산란광의 비율이 높은 처리에서 더 높게 나타났다. 작물의 군락 광합성률과 생장량은 산란 유리를 사용한 처리구에서 대조구에 비해 높게 나타났다. 결과적으로 산란 유리의 이용을 통해 상추의 군락 내 광분포가 개선되었고 군락 광합성률 및 생장량이 증가하여 식물공장의 광이용효율이 향상되는 것으로 나타났다.

Keywords

References

  1. Alton, P. 2008. Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agric. For. Meteorol. 148:1641-1653. https://doi.org/10.1016/j.agrformet.2008.05.014
  2. Baldocchi, D.D., C.A. Vogel, and B. Hall. 1997. Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agric. For. Meteorol. 83:147-170. https://doi.org/10.1016/S0168-1923(96)02335-0
  3. Choudhury, B.J. 2001. Modeling radiation-and carbon-use efficiencies of maize, sorghum, and rice. Agric. For. Meteorol. 106:317-330. https://doi.org/10.1016/S0168-1923(00)00217-3
  4. Dueck, T., J. Janse, T. Li, F. Kempkes, and B. Eveleens. 2012. Influence of diffuse glass on the growth and production of tomato. In VII International Symposium on Light in Horticultural Systems 956:75-82.
  5. Falster, D.S. and M. Westoby. 2003. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol. 158:509-525. https://doi.org/10.1046/j.1469-8137.2003.00765.x
  6. Freedman, J.M., D.R. Fitzjarrald, K.E. Moore, and R.K. Sakai. 2001. Boundary layer clouds and vegetation-atmosphere feedbacks. J. Climate.14:180-197. https://doi.org/10.1175/1520-0442(2001)013<0180:BLCAVA>2.0.CO;2
  7. Goudriaan, J. 1977. Crop micrometeorology: A simulation study. Pudoc, Center for Agricultural Publishing and Documentation, Wageningen, The Netherlands.
  8. Gu, L., D. Baldocchi, S.B. Verma, T.A. Black, T. Vesala, E.M. Falge, and P.R. Dowty. 2002. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res.-Atmos. 107:ACL 2-1-ACL 2-23.
  9. Gu, L., D. Baldocchi, S.C. Wofsy, J.W. Munger, J.J. Michalsky, S.P. Urbanski, and T.A. Boden. 2003. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 299:2035-2038. https://doi.org/10.1126/science.1078366
  10. Gu, L., J.D. Fuentes, H.H. Shugart, R.M. Staebler, and T.A. Black. 1999. Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North American deciduous forests. J. Geophys. Res.-Atmos. 104:31421-31434. https://doi.org/10.1029/1999JD901068
  11. Gutschick, V. 1991. Joining leaf photosynthesis models and canopy photontransport models. In Applications in optical remote sensing and plant ecology, p. 501-535. In: R. Myneni and J. Ross (eds.). Springer-Verlag, New York.
  12. Healey, K.D., G.L. Hammer, K.G. Rickert, and M.P. Bange. 1998. Radiation use efficiency increases when the diffuse component of incident radiation is enhanced under shade. Aust. J. Agric. Res. 49:665-672. https://doi.org/10.1071/A97100
  13. Hemming, S., N. van der Braak, T. Dueck, R. Jongschaap, and N. Marissen. 2005. Filtering natural light by the greenhouse covering using model simulations-More production and better plant quality by diffuse light? In V International Symposium on Artificial Lighting in Horticulture 711:105-110.
  14. Hogewoning, S.W., P. Douwstra, G. Trouwborst, W. van Ieperen, and J. Harbinson. 2010. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J. Exp. Bot. 61:1267-1276. https://doi.org/10.1093/jxb/erq005
  15. Hollinger, D., F. Kelliher, J. Byers, J. Hunt, T. McSeveny, and P. Weir. 1994. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology 75:134-150. https://doi.org/10.2307/1939390
  16. Johnson, D.M. and W.K. Smith. 2006. Low clouds and cloud immersion enhance photosynthesis in understory species of a southern Appalachian spruce-fir forest (USA). Am. J. Bot. 93:1625-1632. https://doi.org/10.3732/ajb.93.11.1625
  17. Johnson, I.R., J.H. Thornley, J.M. Frantz, and B. Bugbee. 2010. A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and $CO_2$. Ann. Bot. 106:735-749. https://doi.org/10.1093/aob/mcq183
  18. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. Hortscience 39:1617-1622.
  19. Li, T., E. Heuvelink, T.A. Dueck, J. Janse, G. Gort, and L.F.M. Marcelis. 2014. Enhancement of crop photosynthesis by diffuse light: Quantifying the contributing factors. Ann. Bot. 114:145-156 https://doi.org/10.1093/aob/mcu071
  20. Li, Z., S. Wakao, B.B. Fischer, and K.K. Niyogi. 2009. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60:239-260. https://doi.org/10.1146/annurev.arplant.58.032806.103844
  21. Lin, K.H., M.Y. Huang, W.D. Huang, M.H. Hsu, Z.W. Yang, and C.M. Yang. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 150:86-91. https://doi.org/10.1016/j.scienta.2012.10.002
  22. Lloyd, J., O. Shibistova, D. Zolotoukhine, O. Kolle, A. Arneth, C. Wirth, J.M. Styles, N. Tchebakova, and E.D. Schulze. 2002. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus B 54:590-610. https://doi.org/10.3402/tellusb.v54i5.16689
  23. Oh, S.J and S.C. Koh. 2014. Photosystem II photochemical efficiency and photosynthetic capacity in leaves of tea plant (Camellia sinensis L.) under winter stress in the field. Hortic. Environ. Biotechnol. 55:363-371. https://doi.org/10.1007/s13580-014-0055-0
  24. Markvart, J., E. Rosenqvist, J. Aaslyng, and C. Ottosen. 2010. How is canopy photosynthesis and growth of chrysanthemums affected by diffuse and direct light? Eur. J. Hortic. Sci. 75:253-258.
  25. Mills, E. 2012. The carbon footprint of indoor Cannabis production. Energy Policy 46:58-67. https://doi.org/10.1016/j.enpol.2012.03.023
  26. Norman, J. and T. Arkebauer. 1991. Predicting canopy light-use efficiency from leaf characteristics. In Modeling plant and soil Systems, p. 125-143. In: R. Hanks and J. Ritchie (eds.). Am. Soc. Agron., Madison, Wisconsin.
  27. Pury, D.d. and G. Farquhar. 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20:537-557. https://doi.org/10.1111/j.1365-3040.1997.00094.x
  28. Rochette, P., R.L. Desjardins, E. Pattey, and R. Lessard. 1996. Instantaneous measurement of radiation and water use efficiencies of a maize crop. Agron. J. 88:627-635. https://doi.org/10.2134/agronj1996.00021962008800040022x
  29. Shin, J.H., T.I. Ahn, and J.E. Son. 2011. Quantitative measurement of carbon dioxide consumption of a whole paprika plant (Capsicum annumm L.) using a large sealed chamber. Korean J. Hortic. Sci. Biotechnol. 29:211-216.
  30. Sinclair, T.R. and T. Shiraiwa. 1993. Soybean radiation-use efficiency as influenced by nonuniform specific leaf nitrogen distribution and diffuse radiation. Crop Sci. 33:808-812. https://doi.org/10.2135/cropsci1993.0011183X003300040036x
  31. Suwa, R. 2011. Canopy photosynthesis in a mangrove considering vertical changes in light-extinction coefficients for leaves and woody organs. J. For. Res. 16:26-34. https://doi.org/10.1007/s10310-010-0203-z
  32. Velez-Ramirez, A., E. Heuvelink, W. van Ieperen, D. Vreugdenhil, and F. Millenaar. 2012. Continuous light as a way to increase greenhouse tomato production: Expected challenges. In VII International Symposium on Light in Horticultural Systems 956:51-57.
  33. Yamazaki, K. 1982. Nutrient solution culture. Pak-kyo co., Tokyo. p. 251. (In Japanese)

Cited by

  1. Sweet Pepper ( Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing vol.7, pp.None, 2016, https://doi.org/10.3389/fpls.2016.01321
  2. 태양광 파장 유사 조합광과 원적색광이 추가된 고압나트륨등 하에서의 오이의 생육과 광형태형성 vol.28, pp.1, 2019, https://doi.org/10.12791/ksbec.2019.28.1.86
  3. 보광용 LED의 광특성과 광자속밀도 특성 vol.22, pp.3, 2021, https://doi.org/10.5762/kais.2021.22.3.333