DOI QR코드

DOI QR Code

Reverse Design of F-Theta Lens for Compact Laser Scanner

소형 2차원 레이저 스캐너용 F-theta 렌즈 역설계

  • Choi, Hae Woon (Dept. of Mechanical and Automotive Engineering, Keimyung Univ.)
  • 최해운 (계명대학교 기계자동차공학과)
  • Received : 2016.11.11
  • Accepted : 2016.11.07
  • Published : 2017.03.01

Abstract

In this study, a reverse design of the F-theta lens was proposed for a 2D scanner in remote welding applications. The curvature and distance of the lens were set as variables, and the focal length of the lens was set as the marginal ray height. The ZEMAX commercial software was used to perform a simulation with unlimited iterations for the optimization process. The target value was optimized using the internal Merit function with the weight factors of focal length and spot diameter. The number of lenses was four, and the focal length obtained from the results was 135mm that is slightly less than that of the commercial lens, which is set with a focal length of 185 mm. The calculated spot diameters are $1.3{\mu}m$, $6.2{\mu}m$, and $16.1{\mu}m$ for $0^{\circ}$, $12.5^{\circ}$ and $23^{\circ}$ of incident laser beam, respectively. It is expected that an optimized lens design is possible by performing the reverse design of a lens by the ray tracing method.

리모트 용접용 2D 스캐너 F-theta 렌즈의 역설계가 광선 추적기법을 사용하여서 수행이 되었다. 렌즈의 곡면 및 렌즈간 거리를 변수로 설정하고 초점거리를 Marginal Ray Height 로 설정하여, 상용 광선추적기법 프로그램을 사용하여 무한반복 최적화를 수행 하였다. 최종목표 값을 설정 후 Merit Function에 정의된 기준에 따라, 최종 초점거리와 초점의 크기를 최종 목표 값 가중치로 설정하였다. 최적화된 렌즈는 총 4매이며, 벤치마킹된 상용렌즈의 초점거리(185mm) 보다는 다소 근거리인 137mm로 최적화 되었지만, 초점의 크기는 레이저 입사각에 따라 RMS 기준 $1.3{\mu}m$, $6.2{\mu}m$ 그리고 $16.1{\mu}m$로 계산 되었으며, 이는 상용렌즈에 근접하는 성능을 구현한다. 입사각별 왜곡도를 중첩 하여서 비교 분석한 결과, 입사각 $0^{\circ}$$12.5^{\circ}$에서는 기존 렌즈와 거의 유사한 형태로 나타나는 것을 볼 수가 있어, 본 연구에서 제안된 역설계기법이 사용자 환경에 따라서 효과적으로 적용되어 최적설계가 이루어질 수 있을 것으로 기대가 된다.

Keywords

References

  1. Martinez, S., Lamikiz, A., Ukar, E., Callej, Arrizubieta, A. and Lacalle, L., 2017, "Analysis of the Regimes in the Scanner-based Laser Hardening Process," Optics and Lasers in Engineering, Vol. 90, pp. 72-800. https://doi.org/10.1016/j.optlaseng.2016.10.005
  2. Miyagia, M., Zhanga, X., Kawahitob, Y. and Katayama, S., 2017, "Surface Void Suppression for Pure Copper by High-speed Laser Scanner Welding," Journal of Materials Processing Technology, 240, pp. 52-59. https://doi.org/10.1016/j.jmatprotec.2016.09.008
  3. Choi, H. and Yoon, S., 2015, "Laser Welding Analysis for 3D Printed Thermoplastics and Polyacetate Polymers," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 7, pp. 701-706. https://doi.org/10.3795/KSME-A.2015.39.7.701
  4. Shi, H., Yoo, S. and Choi, H., 2015, "Optimum Design and Characterization of F-Theta Lens by a 3D Printer(I)," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 14 No. 4, pp. 43-48. https://doi.org/10.14775/ksmpe.2015.14.4.043
  5. Technical Data for F-Theta Lens, 2017, "FTH160-1064-M39," Thorlabs Cat. www.thorlabs.com.
  6. ZEMAX-EE, Web information, www.funako.com May. 2015.