• Title/Summary/Keyword: 3GPP Band 3

Search Result 22, Processing Time 0.03 seconds

Design of a Multi-Band Low Noise Amplifier for 3GPP LTE Applications in 90nm CMOS (3GPP LTE를 위한 다중대역 90nm CMOS 저잡음 증폭기의 설계)

  • Lee, Seong-Ku;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.100-105
    • /
    • 2010
  • A multi-band low noise amplifier (LNA) is designed in 90 nm RF CMOS process for 3GPP LTE (3rd Generation Partner Project Long Term Evolution) applications. The designed multi-band LNA covers the eight frequency bands between 1.85 and 2.8 GHz. A tunable input matching circuit is realized by adopting a switched capacitor array at the LNA input stage for providing optimum performances across the wide operating band. Current steering technique is adopted for the gain control in three steps. The performances of the LNA are verified through post-layout simulations (PLS). The LNA consumes 17 mA at 1.2 V supply voltage. It shows a power gain of 26 at the normal gain mode, and provides much lower gains of 0 and -6.7 in the bypass-I and -II modes, respectively. It achieves a noise figure of 1.78 dB and a IIP3 of -12.8 dBm over the entire band.

A Study on Channel Access Mechanism of LTE for Coexistence with Wi-Fi on 5 GHz Unlicensed Spectrum (5 GHz 비면허대역 무선랜과의 상호공존을 위한 LTE 시스템의 채널접속방법에 관한 연구)

  • Um, Jungsun;Yoo, Sungjin;Park, Seungkwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.374-380
    • /
    • 2015
  • With explosion of wireless traffic it is required to further investigate the technologies on acquiring available spectrum resources and on sharing frequency with existing users. In 3GPP, it is started to study on feasibility and functional requirement of LTE standard in order to extend cellular services offered on only licensed band to 5 GHz unlicensed band. Operating scenario on LTE in unlicensed band is focused on carrier aggregation with licensed band, and the coexistence with Wi-Fi services in 5 GHz band is concerned as a major requirement. For a single global solution framework for licensed assisted access to unlicensed spectrum, listen-before-talk(LBT) mechanism of European regulation for fair access to channel under the coexistence environments is currently examined in 3GPP. In this paper, we evaluate two types of LBT, frame based equipment and load based equipment, with considering LTE carrier aggregation feature and performances of file transferred time and throughput.

비면허대역(unlicensed-band)을 활용한 LTE 시스템의 표준화 및 상용화 동향

  • Son, Il-Su;Lee, Jong-Ho
    • Information and Communications Magazine
    • /
    • v.32 no.11
    • /
    • pp.58-64
    • /
    • 2015
  • 본고에서는 최근 이동통신분야에서 많은 주목을 받고 있는 비면허대역(unlicensed-band)을 활용한 3GPP Long Term Evolution (3GPP-LTE) 시스템의 표준화 및 상용화 동향을 알아본다. 먼저 비면허대역과 관련 전파규정을 알아보고, LTE 시스템이 비면허대역을 활용할 수 있는 3가지 방법인 LTE-U, LTE-LAA, LTE-H를 각각 알아본다. 각각의 방식의 장단점과 표준화 방향 및 향후 LTE 발전 방향에 미치는 영향을 논의한다.

Spectrum Policy and Standardization Trends on Frequency Sharing (주파수 공동사용 정책 및 표준화 동향)

  • Kang, K.M.;Park, J.C.;Choi, S.N.;You, S.J.;Hwang, S.H.;Byun, W.J.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.3
    • /
    • pp.1-10
    • /
    • 2018
  • This article presents spectrum sharing policy trends both overseas and domestically. The Federal Communications Commission recently adopted rules for the commercial use of a 150 MHz bandwidth at 3.55 to 3.7 GHz, which has been utilized for defense and satellite services. This frequency band for spectrum sharing is called the citizens broadband radio service (CBRS) band. In Europe, the related regimes for licensed shared access application at 2.3 to 2.4 GHz has been organized, and interface standardization for sharing frequency information has been completed. In Korea, efforts are being made to establish spectrum-sharing policies to improve the efficiency of the frequency utilization. This article also introduces both the IEEE 802 local area network/metropolitan area network and 3GPP standardization activities with regard to frequency sharing technologies. To effectively solve the spectrum-sharing problem in IEEE 802, standardization activities on the CBRS and the mid-band (3.7-24 GHz) are underway. 3GPP is currently developing the standardization of a licensed assisted access technology, which extends mobile communication services provided in the licensed band to unlicensed bands.

Performance Analysis of the Open Loop Transmitter and Receiver Diversity in the Wide Band CDMA network (광대역 부호분할다원접속(WCDMA) 이동통신 환경하에서 송수신 다이버시티 기법의 성능 분석)

  • Park Sang-Jo;Roh Yong-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.201-211
    • /
    • 2006
  • The standardization of third Generation Partnership Project(3GPP) has been performed in of order to support interactive multimedia services under mobile environments. In this 3GPP, transmit diversity solutions are applied to increase the available diversity effectively using 2 or more antennas. In this paper, we analyzer the performances on STTD(Space Time Transmit Diversity) technique and its modified techniques such as STTD-OTD, CL-STTD, and 4TX-STTD out of open loop transmit diversities that the standardization of 3GPP has released. We also propose the open loop transmitter and receiver diversities to add the receiver diversity. We analyze and discuss the performance of the proposed techniques and using the Matlab simulation under the flat fading channel environment.

  • PDF

Refarming Plans and Radio Waves Law Improvements for Efficient Use of Spectrum (전파의 효율적 이용을 위한 주파수 재배치 방안 및 전파 법령 개선 방안 - LTE 서비스 제공을 위한 1.8 GHz 대역을 중심으로)

  • Seol, Seong-Ho;Kye, Kyung-Moon;Kweon, Soo-Cheon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.888-899
    • /
    • 2012
  • In this paper, we present refarming plans and discuss about Radio Waves Law improvements to promote the efficient use of the 1.8 GHz(3GPP band 3) which is emerging as the best prime band for LTE-FDD service. We think it is important to make use of the entire band for mobile use in accordance with contiguity requirement, especially for LTE such as European countries, which is currently separated between different uses. We present two options with illustrative examples to enable that objective. And we identify several provisions in the Radio Waves Law expected to cause controversy when activates one between two options as the policy, and discuss improvements of those.

Compatibility between LTE Cellular Systems and WLAN (LTE 셀룰라 시스템과 무선랜의 양립성 분석)

  • Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.171-178
    • /
    • 2015
  • 3GPP long-term evolution(LTE) band 2.3~2.4 GHz is adjacent to 2.4~2.5 GHz band for WLAN, and therefore compatibility study of the two systems is desirable. We propose a dynamic system simulation methodology to investigate the effect of WLAN interference on LTE systems. As capturing space/time/frequency changes in system parameters, the dynamic system simulation can exactly predict real system performance. Using the proposed methodology, we obtain LTE downlink throughput loss for the frequency separation between the two systems. Throughput loss under 1 % is obtained from guard band over 11 MHz(single channel allocation) or 10 MHz(three channel allocation).

The implementation of Gate Control Hybrid Doherty Amplifier (효율개선을 위한 Gate 제어 Hybrid Doherty 증폭기 구현)

  • Son Kil-young;Lee Suk-hui;Bang Sung-il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, design and implement 60W Doherty power amplifiers for 3GPP repeater and base station transceiver system. Efficiency improvement and high power property of Doherty power amplifier is distinguishable; however implementation of assistance amplifer is difficult, though. To solve the problem, therefore, GCHD (Gate Control Hybrid Doherty) power amplifier is embodied to gate bias adjusament circuit of assistance amplifier to General Doherty power amplifier. Experiment result shows that $2.11\~2.17GHz$, 3GPP operating frequency band, with 62.55 dB gain, PEP output is 50,76 dBm, W-CDMA average power is 47.81 dBm, and -40.05 dBc ACLR characteristic in 5MHz offset frequency band. Each of the parameter satisfied amplifier specification which we want to design. Especially, GCHD power amplifier shows proper efficiency performance improvement in uniformity ACLR than general power amplifier.

Performance Enhancement of Hybrid Doherty Amplifier using Drain bias control (Drain 바이어스 제어를 이용한 Hybrid Doherty 증폭기의 성능개선)

  • Lee Suk-Hui;Lee Sang-Ho;Bang Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.128-136
    • /
    • 2006
  • In this paper, design and implement 50W Doherty power amplifiers for 3GPP repeater and base station transceiver system. Efficiency improvement and high power property of ideal Doherty power amplifier is distinguishable; however bias control for implementation of Doherty(GDCHD) amplifier is difficult. To solve the problem, therefore, GDCHD(Gate and Drain Control Hybrid Doherty) power amplifier is embodied to drain bias adjustment circuit to Doherty power amplifier with gate bias adjustment circuit. Experiment result shows that $2.11{\sim}2.17\;GHz$, 3GPP operating frequency band, with 57.03 dB gain, PEP output is 50.30 dBm, W-CDMA average power is 47.01 dBm, and -40.45 dBc ACLR characteristic in 5MHz offset frequency band. Each of the parameter satisfied amplifier specification which we want to design. Especially, GDCHD power amplifier shows proper efficiency performance improvement in uniformity ACLR than Doherty power amplifier.

QoS Priority Based Femtocell User Power Control for Interference Mitigation in 3GPP LTE-A HetNet

  • Ahmad, Ishtiaq;Kaleem, Zeeshan;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.2
    • /
    • pp.61-74
    • /
    • 2014
  • In recent years, development of femtocells are receiving considerable attention towards increasing the network coverage, capacity, and improvement in the quality of service for users. In 3GPP LTE-Advanced (LTE-A) system, to efficiently utilize the bandwidth, femtocell and macro cell uses the same frequency band, but this deployment poses a technical challenge of cross-tier interference to macro users. In this paper, the novel quality of service based fractional power control (QoS-FPC) scheme under the heterogeneous networks environment is proposed, which considers the users priority and QoS-requirements during the power allocation. The proposed QoS-FPC scheme has two focal points: firs, it protects the macrocell users uplink communication by limiting the cross-tier interference at eNB below a given threshold, and second, it ensures the optimization of femtocell users power allocation at each power adjustment phase. Performance gain is demonstrated with extensive system-level simulations to show that the proposed QoS-FPC scheme significantly decreases the cross-tier intereference and improves the overall users throughput.