• Title/Summary/Keyword: 3D-structure

Search Result 6,819, Processing Time 0.033 seconds

The Field Coil End Effect of HTS Synchronous Motor (고온초전도 동기모터의 계자코일 단부의 영향)

  • 백승규;권운식;손명환;이언용;권영길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.276-279
    • /
    • 2003
  • The superconducting synchronous machine(S.S.M) including generator and motor has different electromagnetic structure from the conventional machine. With the help of superconductor having much higher operating current density than normal conductor, S.S.M can eliminate most of iron core filling inside of the conventional machine. This air-cored structure could be analysed and designed theoretically based on 2-dimensional(2-D) magnetic field distribution assuming that the windings are extended infinitely toward the axial direction. However the actual structure of S.S.M has the end regions interconnecting the straight parts of the same cross-section with the 2-D model. Therefore, this actual 3-D model has smaller field distribution than the 2-D model. In this paper, we consider the effect of the end regions on the output of a HTS model motor and suggest more accurate design approach through comparison of 2-D and 3-D magnetic field analysis.

  • PDF

An Efficient Algorithm for Rebar Element Generation Using 3D CAD Data (3D CAD 데이터 기반의 효율적 철근 요소 생성 알고리즘)

  • Cho, Kyung-Jin;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.475-485
    • /
    • 2009
  • In this paper a two-step algorithm is proposed to efficiently generate rebar elements from 3D CAD data in the context of CAD/CAE data transfer. The first step is an algorithm to identify various type rebar objects and their attributes by analyzing 3D CAD data in STEP format, which is one of the international data standards. The second algorithmic step is a procedure to generate one-dimensional rebar elements from the object data made through the first step for finite element analysis or other CAE tasks. Successful rebar element data generation from real 3D CAD data for a reinforced concrete structure shows the efficacy of the proposed algorithm.

The Analysis of Threshold Voltage Shift for Tapered O/N/O and O/N/F Structures in 3D NAND Flash Memory (3D NAND Flash Memory에서 Tapering된 O/N/O 및 O/N/F 구조의 Threshold Voltage 변화 분석)

  • Jihwan Lee;Jaewoo Lee;Myounggon Kang
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.110-115
    • /
    • 2024
  • This paper analyzed the Vth (Threshold Voltage) variations in 3D NAND Flash memory with tapered O/N/O (Oxide/Nitride/Oxide) structure and O/N/F (Oxide/Nitride/Ferroelectric) structure, where the blocking oxide is replaced by ferroelectric material. With a tapering angle of 0°, the O/N/F structure exhibits lower resistance compared to the O/N/O structure, resulting in reduced Vth variations in both the upper and lower regions of the WL (Word Line). Tapered 3D NAND Flash memory shows a decrease in channel area and an increase in channel resistance as it moves from the upper to the lower WL. Consequently, as the tapering angle increases, the Vth decreases in the upper WL and increases in the lower WL. The tapered O/N/F structure, influenced by Vfe proportional to the channel radius, leads to a greater reduction in Vth in the upper WL compared to the O/N/O structure. Additionally, the lower WL in the O/N/F structure experiences a greater increase in Vth compared to the O/N/O structure, resulting in larger Vth variations with increasing tapering angles.

3-D field distribution effect on HTS synchronous motor (고온초전도 동기모터의 3차원 자장 분포 영향)

  • Baik, S.K.;Sohn, M.H.;Lee, E.Y.;Kwon, W.S.;Jo, Y.S.;Kwon, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.768-770
    • /
    • 2003
  • A superconducting synchronous motor has different electromagnetic structure from the conventional machine. With the help of superconductor having much higher operating current density than normal conductor, superconducting motor can eliminate most of iron core filled inside of the conventional machine. This air-cored structure could be analysed and designed theoretically based on 2-dimensional(2-D) magnetic field distribution assuming that the windings are extended infinitely toward the axial direction. However, the actual structure of superconducting motor has the end regions interconnecting the straight parts of the same cross-section with the 2-D model. Therefore, this actual 3-D model has smaller field distribution than the 2-D model. In this paper, we consider the effect of the end regions on the output of a HTS model motor and suggest more accurate design approach through comparison of 2-D and 3-D magnetic field analysis results.

  • PDF

A Study on utilizing 3D model to input and display the information of structural inspection (3D 객체 모델을 활용한 점검 정보입력 및 표출에 관한 연구)

  • Jang, Jeong-Hwan;An, Ho-Hyun;Park, Sang Deok;Kang, Dong-Hyun
    • Journal of KIBIM
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • In general, a two-dimensional platform were used to manage the structural inspection information. But we performed a study on utilizing 3D model to input and display the information of structure inspection. Coarse and Fine model of structure were used to input the information. 3D model combined with database built from record plan and field inspections data and rating will provide more intuitive and effective environment for inspectors in bridge maintenance.

Application of Point Cloud Based Hull Structure Deformation Detection Algorithm (포인트 클라우드 기반 선체 구조 변형 탐지 알고리즘 적용 연구)

  • Song, Sang-ho;Lee, Gap-heon;Han, Ki-min;Jang, Hwa-sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.235-242
    • /
    • 2022
  • As ship condition inspection technology has been developed, research on collecting, analyzing, and diagnosing condition information has become active. In ships, related research has been conducted, such as analyzing, detecting, and classifying major hull failures such as cracks and corrosion using 2D and 3D data information. However, for geometric deformation such as indents and bulges, 2D data has limitations in detection, so 3D data is needed to utilize spatial feature information. In this study, we aim to detect hull structural deformation positions. It builds a specimen based on actual hull structure deformation and acquires a point cloud from a model scanned with a 3D scanner. In the obtained point cloud, deformation(outliers) is found with a combination of RANSAC algorithms that find the best matching model in the Octree data structure and dataset.

A Bandstop Filter Using C-DGS(Coupled-Defected Ground Structure) and the Mixer Application (결합된 결함 접지면 구조(C-DGS)를 이용한 대역 저지 여파기 및 믹서 응용)

  • Jung, Sang-Woon;Jang, Jae-Won;Lim, Young-Kwang;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1039-1046
    • /
    • 2007
  • In this paper, a coupled-defected ground structure(C-DGS) using negative inductive coupling is proposed and a bandstop filter(BSF) using C-DGS is designed and fabricated. The proposed C-DGS is the closely-located DGS cells for the negative coupling, the negative coupling of ground currents between adjacent DGS cells greatly improves the stopband characteristics. The proposed BSF utilizing the sharp cutoff response of the C-DGS has a -10 dB rejection band from 4 GHz to 11.3 GHz. A maximum attenuation rate is -64.3 dB/GHz in 3 cell structure, -108 dB/GHz in 5 cell structure. The C-DGS BSF shows the improved attenuation rate 3.8 times in 3 cell structure, 2.4 times in 5 cell structure, Also, the C-DGS BSF is reduced to 35.2 % and 40 % of the DGS BSF, respectively, due to the closely-located DGS cells. We fabricated the single gate mixer using C-DGS BSF. The single gate mixer has 6.6 dB conversion gain.

4D printing with smart materials and structures (스마트 소재 및 구조 기반 4D 프린팅 기술 동향)

  • Song, Hyeonseo;Kim, Jiyun
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.27-37
    • /
    • 2020
  • Recently, 4D printing technology has received considerable attention in various industries and research fields including soft robotics, tissue engineering, electronics. In 4D printing process, 3D printed object transforms itself into programmed structure by the input of external energy. Thus, this process requires not only smart materials, capable of changing their properties or features in response to external stimuli such as electricity, temperature, light, etc., but also smart structures, multi-material 3D printing, simulation and so on. In this review, the concept, technical elements and potential of 4d printing are presented.

Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine

  • Park, Hyeon Jin;Oh, Min Kyu;Park, Soonok;Yoo, Jeonghoon
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.291-301
    • /
    • 2022
  • Although mostly used in wind turbine market, single rotor wind turbines have problems with transportation and installation costs due to their large size. In order to solve such problems, multi-rotor wind turbine is being proposed; however, light weight design of multi-rotor wind turbine is required considering the installation at offshore or deep sea. This study proposes the systematic design process of the multi-rotor wind turbine focused on its supporting structure with simultaneous consideration of static and dynamic behaviors in an ideal situation. 2D and successive 3D topology optimization process based on the density method were applied to minimize the compliance of supporting structure. To realize the conceptual design obtained by topology optimization for manufacturing feasibility, the derived 3D structure was modified to have shell structures and optimized again through parametric design using the design of experiments and the response surface method for detail design of their thicknesses and radii. The resultant structure was determined to satisfy the stress and the buckling load constraint as well as to minimize the weight and the resultant supporting structure were verified numerically.

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.