DOI QR코드

DOI QR Code

4D printing with smart materials and structures

스마트 소재 및 구조 기반 4D 프린팅 기술 동향

  • Song, Hyeonseo (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Jiyun (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
  • 송현서 (울산과학기술원 신소재공학부) ;
  • 김지윤 (울산과학기술원 신소재공학부)
  • Received : 2020.03.02
  • Accepted : 2020.03.17
  • Published : 2020.03.31

Abstract

Recently, 4D printing technology has received considerable attention in various industries and research fields including soft robotics, tissue engineering, electronics. In 4D printing process, 3D printed object transforms itself into programmed structure by the input of external energy. Thus, this process requires not only smart materials, capable of changing their properties or features in response to external stimuli such as electricity, temperature, light, etc., but also smart structures, multi-material 3D printing, simulation and so on. In this review, the concept, technical elements and potential of 4d printing are presented.

Keywords

References

  1. C. Goldstein, J. D. Campbell and T. C. Mowry, "Programmable matter," Computer, 38 [6] 99-101, (2005). https://doi.org/10.1109/MC.2005.198
  2. M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, "Swarm robotics: a review from the swarm engineering perspective," Swarm Intell., 7 [1] 1-41 (2013). https://doi.org/10.1007/s11721-012-0075-2
  3. A. Pamecha, I. Ebert-Uphoff and G. S. Chirikjian, "Useful metrics for modular robot motion planning," IEEE Transactions on Robotics and Automation, 13 [4] 531-545 (1997). https://doi.org/10.1109/70.611311
  4. S. Tibbits, "Skyler Tibbits: The Emergence of 4D Printing," TED, (2013)., Available: http://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing.
  5. F. Momeni, S.M.M. Hassani, N.X. Liu, J. Ni, "A review of 4D printing," Mater. Des., 122 42-79 (2017). https://doi.org/10.1016/j.matdes.2017.02.068
  6. D. Raviv, W. Zhao, C. McKnelly, A. Papadopoulou, A. Kadambi, B. Shi, S. Hirsch, D. Dikovsky, M. Zyracki, C. Olguin, R. Raskar, S. Tibbits, "Active printed materials for complex self-evolving deformations," Sci. Rep., 4 7422 (2014). https://doi.org/10.1038/srep07422
  7. S. Tibbits, "4D printing: Multi-material shape change." Architect. Des., 84 [1] 116-121 (2014). https://doi.org/10.1002/ad.1710
  8. C. Majidi, "Soft-Matter Engineering for Soft Robotics," Adv. Mater. Technol., 4 [2] 1800477 (2019).
  9. L. Hines, K. Petersen, G. Z. Lum, M. Sitti, "Soft Actuators for Small-scale Robotics," Adv. Mater., 29 [13] 1603483 (2017). https://doi.org/10.1002/adma.201603483
  10. E. Lee, D. Kim, H. Kim, J. Yoon, "Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles," Sci. Rep., 5, 15124 (2015). https://doi.org/10.1038/srep15124
  11. Y. Kim, H. Yuk, R. Zhao, S. A. Chester, X. Zhao, "Printing ferromagnetic domains for untethered fast-transforming soft materials", Nature, 588 [7709] 274-279 (2018).
  12. A. S. Gladman, E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, J. A. Lewis, "Biomimetic 4D printing," Nat. Mater., 15 [4] 413-418 (2016). https://doi.org/10.1038/nmat4544
  13. G. Liu, Y. Zhao, G. Wu, J. Lu, "Origami and 4D Printing of Elastomer-derived Ceramic Structures," Sci. Adv., 4 [8] (2018).
  14. J. L. Silverberg, J.-H. Na, A. A. Evans, B. Liu, T. C. Hull, C. D. Santangelo, R. J. Lang, R. C. Hayward, I. Cohen, "Origami structures with a critical transition to bistability arising from hidden degrees of freedom," Nat. Mater., 14 [4] 389-393 (2015). https://doi.org/10.1038/nmat4232
  15. N. C. Seeman,"Nucleic acid junctions and lattices," Journal of theoretical biology, 99 [2] 237-247, (1982). https://doi.org/10.1016/0022-5193(82)90002-9
  16. P. W. K. Rothemund, "Folding DNA to create nanoscale shapes and patterns," Nature, 440 [7082] 297-302 (2006). https://doi.org/10.1038/nature04586
  17. J. A. Faber, A. F. Arrieta, A. R. Studart, "Bioinspired spring origami," Science 359 [6382] 1386-1391 (2018). https://doi.org/10.1126/science.aap7753
  18. E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, R. J. Wood, "Programmable matter by folding," Proc. Natl. Acad. Sci. U.S.A., 107 [28] 12441-12445 (2010).
  19. L.Wilson, S.Pellegrino, Rolf Danner, "Origami sunshield concepts for space telescopes," 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., 1594 (2013).
  20. A. Lamoureux, K. Lee, M. Shlian, S. R. Forrest, M. Shtein, "Dynamic kirigami structures for integrated solar tracking," Nat. Commun., 6 8092 (2015). https://doi.org/10.1038/ncomms9092
  21. M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, P. L. McEuen, "Graphene kirigami," Nature 524 [7564] 204-207 (2015). https://doi.org/10.1038/nature14588
  22. A. Rafsanjani, Y. Zhang, B. Liu, S. M. Rubinstein, K. Bertold, "Kirigami skins make a simple soft actuator crawl,"Sci. Robot., 3 [15] eaar7555 (2018). https://doi.org/10.1126/scirobotics.aar7555
  23. A. Rafsanjani, L. Jin, B. Deng, K. Bertoldi, "Propagation of pop ups in kirigami shells,"Proc. Natl. Acad. Sci. U.S.A., 116 [17] 8200 (2019). https://doi.org/10.1073/pnas.1817763116
  24. T.H.Kwok, C.C.L. Wang, D. Deng, Y. Zhang, Y. Chen, "4D printing for freeform surfaces: design optimization of origami and kirigami structures," Trans. ASME, J. Mech. Des. 137 [11] (2015).
  25. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84 [18] 4184 (2000). https://doi.org/10.1103/PhysRevLett.84.4184
  26. K. Bertoldi, P.M. Reis, S. Willshaw and T. Mullin, "Negative Poisson's Ratio Behavior Induced by an Elastic Instability," Adv. Mater., 22 [3] 361-366 (2010). https://doi.org/10.1002/adma.200901956
  27. J.T.B. Overvelde, S. Shan and K. Bertoldi," Compaction Through Buckling in 2D Periodic, Soft and Porous Structures: Effect of Pore Shape," Adv. Mater., 24 [17] 2337-2342 (2012). https://doi.org/10.1002/adma.201104395
  28. H. Zhang, X. Guo, J. Wu, D. Fang, and Y. Zhang, "Soft mechanical metamaterials with unusual swelling behavior and tunable stressstrain curves," Sci. Adv., 4 [6] eaar8535 (2018). https://doi.org/10.1126/sciadv.aar8535
  29. K. Liu, J. Wu, G. H. Paulino, H. J. Qi, "Programmable Deployment of Tensegrity Structures by Stimulus-Responsive Polymers," Sci. Rep., 7 [1] 3511 (2017). https://doi.org/10.1038/s41598-017-03412-6
  30. S. Ham, and Y.G. Lee., "A study on the automatic design of 4D printing to follow the target shape," Korea Journal of Computational Design and Engineering 21 [3] 306-312 (2016). https://doi.org/10.7315/CDE.2016.306
  31. N. Cheney, R. MacCurdy, J. Clune, and H. Lipson, "Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding," ACM SIGEVOlution 7 [1] 11-23 (2014). https://doi.org/10.1145/2661735.2661737
  32. W. Kim, J. Byun, J. Kim, W. Choi, K. Jakobsen, J. Jakobsen, D. Lee, and K. Cho. "Bioinspired dual-morphing stretchable origami," Sci. Robot., 4 [36] eaay3493 (2019). https://doi.org/10.1126/scirobotics.aay3493
  33. "MIT Self Assembly Lab creates Shapeshifting Minimal Shoe," All3DP, last modified Nov 10, 2015, accessed Fab 28, 2020, www.all3dp.com/mit-self-assembly-lab-minimalshoe/
  34. J.Rosenkrantz, J.L.-Rosenberg,"Dress/code democratising design through computation and digital fabrication, "Architectural Design, 87 [6] 48-57 (2017). https://doi.org/10.1002/ad.2237
  35. "Organovo Subsidiary Samsara Sciences Launches Commercial Operations, Will Be Dedicated Cell Provider for 3D Bioprinting Company," 3Dprint.com, last modified Jan 13, 2016, accessed Fab 28, 2020, www.3dprint.com/115090/organovo-samsara-sciences/2/
  36. "BMW i Next : une voiture lectrique autonome pour 2021," Automobile Propre, last modified May 14 2016, accessed Fab 28, 2020, www.automobile-propre.com/breves/bmw-inext-voiture-electrique-autonome-2021/