• Title/Summary/Keyword: 3D target system

Search Result 625, Processing Time 0.033 seconds

Implementation of 3D Moving Target-Tracking System based on MSE and BPEJTC Algorithms

  • Ko, Jung-Hwan;Lee, Maeng-Ho;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, a new stereo 3D moving-target tracking system using the MSE (mean square error) and BPEJTC (binary phase extraction joint transform correlator) algorithms is proposed. A moving target is extracted from the sequential input stereo image by applying a region-based MSE algorithm following which, the location coordinates of a moving target in each frame are obtained through correlation between the extracted target image and the input stereo image by using the BPEJTC algorithm. Through several experiments performed with 20 frames of the stereo image pair with $640{\times}480$ pixels, we confirmed that the proposed system is capable of tracking a moving target at a relatively low error ratio of 1.29 % on average at real time.

Three-Dimensional Automatic Target Recognition System Based on Optical Integral Imaging Reconstruction

  • Lee, Min-Chul;Inoue, Kotaro;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • In this paper, we present a three-dimensional (3-D) automatic target recognition system based on optical integral imaging reconstruction. In integral imaging, elemental images of the reference and target 3-D objects are obtained through a lenslet array or a camera array. Then, reconstructed 3-D images at various reconstruction depths can be optically generated on the output plane by back-projecting these elemental images onto a display panel. 3-D automatic target recognition can be implemented using computational integral imaging reconstruction and digital nonlinear correlation filters. However, these methods require non-trivial computation time for reconstruction and recognition. Instead, we implement 3-D automatic target recognition using optical cross-correlation between the reconstructed 3-D reference and target images at the same reconstruction depth. Our method depends on an all-optical structure to realize a real-time 3-D automatic target recognition system. In addition, we use a nonlinear correlation filter to improve recognition performance. To prove our proposed method, we carry out the optical experiments and report recognition results.

Estimation of Person Height and 3D Location using Stereo Tracking System (스테레오 추적 시스템을 이용한 보행자 높이 및 3차원 위치 추정 기법)

  • Ko, Jung Hwan;Ahn, Sung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • In this paper, an estimation of person height and 3D location of a moving person by using the pan/tilt-embedded stereo tracking system is suggested and implemented. In the proposed system, face coordinates of a target person is detected from the sequential input stereo image pairs by using the YCbCr color model and phase-type correlation methods and then, using this data as well as the geometric information of the stereo tracking system, distance to the target from the stereo camera and 3-dimensional location information of a target person are extracted. Basing on these extracted data the pan/tilt system embedded in the stereo camera is controlled to adaptively track a moving person and as a result, moving trajectory of a target person can be obtained. From some experiments using 780 frames of the sequential stereo image pairs, it is analyzed that standard deviation of the position displacement of the target in the horizontal and vertical directions after tracking is kept to be very low value of 1.5, 0.42 for 780 frames on average, and error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 0.5% on average. These good experimental results suggest a possibility of implementation of a new stereo target tracking system having a high degree of accuracy and a very fast response time with this proposed algorithm.

Convergence Control of Moving Object using Opto-Digital Algorithm in the 3D Robot Vision System

  • Ko, Jung-Hwan;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, a new target extraction algorithm is proposed, in which the coordinates of target are obtained adaptively by using the difference image information and the optical BPEJTC(binary phase extraction joint transform correlator) with which the target object can be segmented from the input image and background noises are removed in the stereo vision system. First, the proposed algorithm extracts the target object by removing the background noises through the difference image information of the sequential left images and then controlls the pan/tilt and convergence angle of the stereo camera by using the coordinates of the target position obtained from the optical BPEJTC between the extracted target image and the input image. From some experimental results, it is found that the proposed algorithm can extract the target object from the input image with background noises and then, effectively track the target object in real time. Finally, a possibility of implementation of the adaptive stereo object tracking system by using the proposed algorithm is also suggested.

A Study on Performance Improvement of Target Motion Analysis using Target Elevation Tracking and Fusion in Conformal Array Sonar (컨포멀 소나에서의 표적고각 추적 및 융합을 이용한 표적기동분석 성능향상 연구)

  • Lee, HaeHo;Park, GyuTae;Shin, KeeCheol;Cho, SungIl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.320-331
    • /
    • 2019
  • In this paper, we propose a method of TMA(Target Motion Analysis) performance improvement using target elevation tracking and fusion in conformal array sonar. One of the most important characteristics of conformal array sonar is to detect a target elevation by a vertical beam. It is possible to get a target range to maximize advantages of the proposed TMA technology using this characteristic. And the proposed techniques include target tracking, target fusion, calculation of target range by multipath as well as TMA. A simulation study demonstrates the outstanding performance of proposed techniques.

Surface Deformation by using 3D Target Curve for Virtual Spatial Design (가상 공간 디자인을 위한 3차원 목표곡선을 이용한 곡면 변형)

  • Kwon, Jung-Hoon;Lee, Jeong-In;Chai, Young-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.868-876
    • /
    • 2006
  • 2D input data have to be converted into 3D data by means of some functions and menu system in 2D input modeling system. But data in 3D input system for virtual spatial design can be directly connected to the 3D modeling data. Nevertheless, efficient surface modeling and deformation algorithm for the 3D input modeling system are not proposed yet. In this paper, problems of conventional NURBS surface deformation methods which can occur when applied in the 3D input modeling system are introduced. And NURBS surface deformation by 3D target curves, in which the designer can easily approach, are suggested. Designer can efficiently implement the virtual spatial sketching and design by using the proposed deformation algorithm.

Performance Analysis of SAR System Using Radar Target Simulation Equipment (표적모의장치를 이용한 SAR 장비의 성능 분석)

  • Kweon, Soon-Koo;Yeo, Hwan-Yong;Park, Sung-Min;Han, Ji-Hoon;Jung, Chang-Sik;Kim, Ki-Wan;Shin, Hyun-Ik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.118-127
    • /
    • 2018
  • In this work, we have designed and manufactured radar target simulation equipment for the performance analysis of synthetic aperture radar(SAR) systems. First, we have explained the function and performance specification of the target simulation equipment and point target scenario generation for validation of the SAR system. In addition, we have developed a simple and accurate calibration method for the time delay of the SAR system using the manufactured target simulation equipment. We have analyzed the point target impulse response function of the SAR image acquired using the SAR system and the target simulation equipment. It was observed that the measured peak to side lobe ratio(=-13.25 dB) and resolution(=0.49 m) are in good agreement with the corresponding theoretical values.

Implementation of Intelligent Moving Target Tracking and Surveillance System Using Pan/Tilt-embedded Stereo Camera System (팬/틸트 탑제형 스테레오 카메라를 이용한 지능형 이동표적 추적 및 감시 시스템의 구현)

  • 고정환;이준호;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.514-523
    • /
    • 2004
  • In this paper, a new intelligent moving target tracking and surveillance system basing on the pan/tilt-embedded stereo camera system is suggested and implemented. In the proposed system, once the face area of a target is detected from the input stereo image by using a YCbCr color model and then, using this data as well as the geometric information of the tracking system, the distance and 3D information of the target are effectively extracted in real-time. Basing on these extracted data the pan/tilted-embedded stereo camera system is adaptively controlled and as a result, the proposed system can track the target adaptively under the various circumstance of the target. From some experiments using 80 frames of the test input stereo image, it is analyzed that standard deviation of the position displacement of the target in the horizontal and vertical directions after tracking is kept to be very low value of 1.82, 1.11, and error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 0.5% on average. From these good experimental results a possibility of implementing a new real-time intelligent stereo target tracking and surveillance system using the proposed scheme is finally suggested.

DEVELOPMENT AND EVALUATION OF A TEMPORARY PLACEMENT AND CONVEYANCE OPERATION SIMULATION SYSTEM USING AUGMENTED REALITY

  • Yan, Weida;Aoyama, Shuhei;Ishii, Hirotake;Shimoda, Hiroshi;Sang, Tran T.;Inge, Solhaug Lars;Lygren, Toppe Aleksander;Terje, Johnsen;Izumi, Masanori
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.507-522
    • /
    • 2012
  • When decommissioning a nuclear power plant, it is difficult to make an appropriate plan to ensure sufficient space for temporary placement and conveyance operations of dismantling targets. This paper describes a system to support temporary placement and conveyance operations using augmented reality (AR). The system employs a laser range scanner to measure the three-dimensional (3D) information of the environment and a dismantling target to produce 3D surface polygon models. Then, the operator simulates temporary placement and conveyance operations using the system by manipulating the obtained 3D model of the dismantling target in the work field. Referring to the obtained 3D model of the environment, a possible collision between the dismantling target and the environment is detectable. Using AR, the collision position is presented intuitively. After field workers evaluated this system, the authors concluded that the system is feasible and acceptable to verify whether spaces for passage and temporary storage are sufficient for temporary placement and conveyance operations. For practical use in the future, some new functions must be added to improve the system. For example, it must be possible for multiple workers to use the system simultaneously by sharing the view of dismantling work.

Development of 3D absolute displacement monitoring system and its application at the stage of tunnel construction (터널 시공 중 3차원 절대변위 계측시스템의 개발과 적용)

  • Bang, Joon-Ho;Kim, Ki-Young;Jong, Yong-Hun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.229-240
    • /
    • 2007
  • The 3D absolute displacement monitoring system has been developed to analyze the tunnel convergence measured under construction of underground structures and to manage effectively the measured data. The system is comprised of the total station, the anchor-typed target pin and the 3D absolute displacement measurement and management program. In this paper, the types and specifications of the 3D total station were presented. The anchor-typed target pin, an improved model of traditional one, was developed and its sightable distance and measurement accuracy were checked by field tests. Also a 3D absolute displacement measurement and management program, TEMS 3D, was developed to provide some analysis tools including the trend and influence lines. L/C ratio, S/C ratio and the like. The developed system was applied the construction stage of a railway tunnel for testing purpose. It is verified that the developed system is capable of predicting weak zones ahead of tunnel face by comparing with results of TSP (Tunnel Seismic Prediction) survey.

  • PDF