• Title/Summary/Keyword: 3D spatial data

Search Result 849, Processing Time 0.027 seconds

A Spatiotemporal Data Model : 3D Supporting BiTemporal Time (시공간 데이타 모델 : 이원 시간을 지원하는 삼차원 구조)

  • 이성종;김동호;류근호
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1167-1167
    • /
    • 1999
  • Although spatial databases support an efficient spatial management on objects in the real world, they have a characteristic that process only spatial information valid at current time, So in case of change in the spatial domain, it is very hard to support an efficient historical management for time-varying spatial information because they delete an old value and then replace with new value that is valid at current time. To solve these problems, there are rapidly increasing of interest for spatiotemporal databases, which serve historical functions for spatial information as well as spatial management functions for an object. However most of them presented in an abstract time-varying spatial phenomenon, but have not presented a concrete policy in spatiotemporal databases. In this paper, we propose a spatiotemporal data model that supports bitemporal time concepts in three dimensional architecture. In the proposed model, not only data types and their operation for object of spatiotemporal databases have been classified, but also mathematical expressions using formal semantics for them have been given. Then, the data structures and their operations based on relational database model as well as object-oriented database model are presented.

Development of a CAVE type Virtual Reality System for 3-D Spatial Data Visualization (3차원 공간 자료 시각화를 위한 CAVE 형 가상현실 시스템 구축)

  • Lee, Kwan-Woo;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.117-120
    • /
    • 2004
  • Immersive virtual reality provides an effective way of visualizing and analyzing various spatial data, such as wireline logs, three-dimensional seismic, and interpreted geologic boundaries, and etc. Although it is a valuable tool for oil and gas exploration, its usage has been limited to a specific area because of its high development costs. This paper describes the development of an immersive virtual reality system, known as CAVE (Cave Automatic Virtual Environment) that maximizes immersiveness with reasonable prices by using general purpose PC and projectors.

Development of Realtime GRID Analysis Method based on the High Precision Streaming Data

  • Lee, HyeonSoo;Suh, YongCheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.569-578
    • /
    • 2016
  • With the recent advancement of surveying and technology, the spatial data acquisition rates and precision have been improved continually. As the updates of spatial data are rapid, and the size of data increases in line with the advancing technology, the LOD (Level of Detail) algorithm has been adopted to process data expressions in real time in a streaming format with spatial data divided precisely into separate steps. The existing GRID analysis utilizes the single DEM, as it is, in examining and analyzing all data outside the analysis area as well, which results in extending the analysis time in proportion to the quantity of data. Hence, this study suggests a method to reduce analysis time and data throughput by acquiring and analyzing DEM data necessary for GRID analysis in real time based on the area of analysis and the level of precision, specifically for streaming DEM data, which is utilized mostly for 3D geographic information service.

Construction of a Campus Facilities Management System Using Three Dimensional GIS (3차원 GIS에 의한 캠퍼스 시설물 관리시스템 구축)

  • Lee, Jin-Duk;Kim, Ki-Ho;Hur, Chan-Hoe
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.367-369
    • /
    • 2010
  • The purpose of this study is to develop a campus facility management system, construct 3D graphic data and attribute data of facilities on the Kumoh National Institute of Technology and then verificate the developed system's practicability. Utilized the existing campus facility data from the existing drawings, images, cadastre records and so forth, 3D position data of underground facilities surveyed with a total station and high-resolution aerial photos, 3D realistic models were produced by means of a XD2D software and a XDWORLD Builder Professional software of GIS engines. We intend to embody not only campus guide service in virtual reality space but visualization of 3D virtual campus by providing 2D and 3D data to web space using XDWORLD server soon after. It is expected that the campus facility management system is able to contribute to the integrated management of 3D facility data service, the support of prompt decision-making related to spatial affairs, the work simplification through data holding in common between the members of the staff and so forth.

  • PDF

DEM Construction and Spatial Analysis of the Planned Construction Site for Establishment of Housing Construction Planning (주택건설 사업계획 수립을 위한 공사 예정지의 DEM 구축 및 공간분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.621-626
    • /
    • 2021
  • In this study, data on the study site for apartment construction was acquired, and the quantity of construction waste was calculated using a drone and mobile 3D laser scanner. The accuracy of the drone was 0.034 to 0.064m in the horizontal and vertical directions, respectively, and the mobile 3D Laser Scanner showed an accuracy of 0.018 to 0.049m in the horizontal direction, respectively. These results suggest that it is possible to construct spatial information using a drone and mobile 3D laser scanner with a value within the allowable accuracy of 1:1,000 digital terrain. The volume of construction waste calculated using the mobile 3D laser scanner data was 70,797㎥. It was possible to calculate the volume on the side of the building or some facilities that appeared as shaded areas in the drone outcomes. In addition, modeling was performed for view analysis of the apartments scheduled to be constructed and the terrain-based modeling results of the surrounding buildings. In the future, data construction and accuracy evaluation using mobile 3D laser scanners will be conducted. In addition, additional research comparing existing methods and work processes will be carried out, and the efficiency of mobile 3D laser scanners in the field of spatial information construction can be presented.

High Spatial Resolution Satellite Image Simulation Based on 3D Data and Existing Images

  • La, Phu Hien;Jeon, Min Cheol;Eo, Yang Dam;Nguyen, Quang Minh;Lee, Mi Hee;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.121-132
    • /
    • 2016
  • This study proposes an approach for simulating high spatial resolution satellite images acquired under arbitrary sun-sensor geometry using existing images and 3D (three-dimensional) data. First, satellite images, having significant differences in spectral regions compared with those in the simulated image were transformed to the same spectral regions as those in simulated image by using the UPDM (Universal Pattern Decomposition Method). Simultaneously, shadows cast by buildings or high features under the new sun position were modeled. Then, pixels that changed from shadow into non-shadow areas and vice versa were simulated on the basis of existing images. Finally, buildings that were viewed under the new sensor position were modeled on the basis of open library-based 3D reconstruction program. An experiment was conducted to simulate WV-3 (WorldView-3) images acquired under two different sun-sensor geometries based on a Pleiades 1A image, an additional WV-3 image, a Landsat image, and 3D building models. The results show that the shapes of the buildings were modeled effectively, although some problems were noted in the simulation of pixels changing from shadows cast by buildings into non-shadow. Additionally, the mean reflectance of the simulated image was quite similar to that of actual images in vegetation and water areas. However, significant gaps between the mean reflectance of simulated and actual images in soil and road areas were noted, which could be attributed to differences in the moisture content.

Extraction of 3D Objects Around Roads Using MMS LiDAR Data (MMS LiDAR 자료를 이용한 도로 주변 3차원 객체 추출)

  • CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.152-161
    • /
    • 2017
  • Making precise 3D maps using Mobile Mapping System (MMS) sensors are essential for the development of self-driving cars. This paper conducts research on the extraction of 3D objects around the roads using the point cloud acquired by the MMS Light Detection and Ranging (LiDAR) sensor through the following steps. First, the digital surface model (DSM) is generated using MMS LiDAR data, and then the slope map is generated from the DSM. Next, the 3D objects around the roads are identified using the slope information. Finally, 97% of the 3D objects around the roads are extracted using the morphological filtering technique. This research contributes a plan for the application of automated driving technology by extracting the 3D objects around the roads using spatial information data acquired by the MMS sensor.

Suggesting A Concept of 3D Spatial Event Information Control System for Visitor Flow Control in Multi Complex Building (다중이용시설물 이용객의 흐름관리를 위한 3D 기반 공간 이벤트 정보 관리시스템의 개념 제안)

  • Ahn, Byung-Ju;Yoon, Ja-Young;Kim, Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.125-135
    • /
    • 2008
  • A controller who is responsible for visiter's safety makes a decision about measures for visiter safety in human-based decision making process. Many potential accidents that are caused by human error lurk in results of the process. The accidents can be decreased by changing the decision making process from human-based into technology-based. Technology-based decision making process can catch a controller's attention through data filtering, alarm filtering, and so on. So, the controller can get information on occurrence of an unforeseen accident pro-actively. The objective of this study is to suggest a concept of 3D spatial information control system for visitor flow control in multi complex building using technology-based decision making process. This study shows utilization of the system and contribution.

FOFIS : Forest Fire Information Systems (FOFIS: 산불 정보 시스템)

  • 지승도
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.2
    • /
    • pp.13-28
    • /
    • 1999
  • The main purpose of this paper is to design and implement forest fire information system (FOFIS) for effective prevention of forest fire using GIS, database, 3-D graphics, and simulation techniques. In contrast to conventional fire information systems that are mostly based on the 2-D graphics and analytic modeling approaches, we have proposed the cell-based modeling approaches, i.e., spatial, data, and simulation modeling approaches. The cell-based spatial modeling is proposed by eliminating the cliff effect of the typical elevation model so that it can provide realistic 3-D graphics of the forest fire. The cell-based data modeling of geography, meteorology, and forestry information is also proposed. The cell-based dynamic modeling for forecasting of the fire diffusion is developed using the variable structure modeling techniques. Several simulation tests of FOFIS performed on a sample forest area of Chungdo, Kyungsangbukdo will demonstrate our approaches.

  • PDF

Efficient Generation of Computer-generated Hologram Patterns Using Spatially Redundant Data on a 3D Object and the Novel Look-up Table Method

  • Kim, Seung-Cheol;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.6-15
    • /
    • 2009
  • In this paper, a new approach is proposed for the efficient generation of computer-generated holograms (CGHs) using the spatially redundant data on a 3D object and the novel look-up table (N-LUT) method. First, the pre-calculated N-point principle fringe patterns (PFPs) were calculated using the 1-point PFP of the N-LUT. Second, spatially redundant data on a 3D object were extracted and re-grouped into the N-point redundancy map using the run-length encoding (RLE) method. Then CGH patterns were generated using the spatial redundancy map and the N-LUT method. Finally, the generated hologram patterns were reconstructed. In this approach, the object points that were involved in the calculation of the CGH patterns were dramatically reduced, due to which the computational speed was increased. Some experiments with a test 3D object were carried out and the results were compared with those of conventional methods.