• Title/Summary/Keyword: 3D range sensor

Search Result 237, Processing Time 0.041 seconds

A Study on Vision Sensor-based Measurement of Die Location for Its Remodeling (금형 개조 용접시 시각 센서를 이용한 대상물 위치 파악에 관한 연구)

  • Kim, Jitae;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.141-146
    • /
    • 2000
  • We introduce the algorithms of 3-D position estimation using a laser sensor for automatic die remodeling. First, a vision sensor based on the optical triangulation was used to collect the range data of die surface. Second, line vector equations were constructed by the measured range data, and an analytic algorithm was proposed for recognizing the die location with these vector equations. This algorithm could make the transformation matrix without any specific corresponding points. To ascertain this algorithm, folded SUS plate was measured by the laser vision sensor attached to a 3-axis cartesian manipulator and the transformation matrix was calculated.

  • PDF

3D object generation based on the depth information of an active sensor (능동형 센서의 깊이 정보를 이용한 3D 객체 생성)

  • Kim, Sang-Jin;Yoo, Ji-Sang;Lee, Seung-Hyun
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.455-466
    • /
    • 2006
  • In this paper, 3D objects is created from the real scene that is used by an active sensor, which gets depth and RGB information. To get the depth information, this paper uses the $Zcam^{TM}$ camera which has built-in an active sensor module. <중략> Thirdly, calibrate the detailed parameters and create 3D mesh model from the depth information, then connect the neighborhood points for the perfect 3D mesh model. Finally, the value of color image data is applied to the mesh model, then carries out mapping processing to create 3D object. Experimentally, it has shown that creating 3D objects using the data from the camera with active sensors is possible. Also, this method is easier and more useful than the using 3D range scanner.

  • PDF

Automated texture mapping for 3D modeling of objects with complex shapes --- a case study of archaeological ruins

  • Fujiwara, Hidetomo;Nakagawa, Masafumi;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1177-1179
    • /
    • 2003
  • Recently, the ground-based laser profiler is used for acquisition of 3D spatial information of a rchaeological objects. However, it is very difficult to measure complicated objects, because of a relatively low-resolution. On the other hand, texture mapping can be a solution to complement the low resolution, and to generate 3D model with higher fidelity. But, a huge cost is required for the construction of textured 3D model, because huge labor is demanded, and the work depends on editor's experiences and skills . Moreover, the accuracy of data would be lost during the editing works. In this research, using the laser profiler and a non-calibrated digital camera, a method is proposed for the automatic generation of 3D model by integrating these data. At first, region segmentation is applied to laser range data to extract geometric features of an object in the laser range data. Various information such as normal vectors of planes, distances from a sensor and a sun-direction are used in this processing. Next, an image segmentation is also applied to the digital camera images, which include the same object. Then, geometrical relations are determined by corresponding the features extracted in the laser range data and digital camera’ images. By projecting digital camera image onto the surface data reconstructed from laser range image, the 3D texture model was generated automatically.

  • PDF

Controlling Photo-Environment of Ginseng Cultivation Using Agricultural Weather Sensor Data (농업기상 센서 데이터를 활용한 인삼재배 광환경 조절 연구)

  • Park, Jeonghwan;Song, Soobin;Seo, Sang Young;Jeon, Sook Lye
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.180-186
    • /
    • 2022
  • Photosynthetically active radiation flux density (PPFD) and daily light integral (DLI) values related to plant photosynthesis were obtained using the sunlight time and insolation data points in the agricultural weather sensor data for Jinan-gun, Jeollabuk-do, Korea from 2016 to 2020. The objective was to optimize the photo-environmental conditions for cultivating ginseng. The range of average monthly sunshine duration was 395.5-664.1 min, with the longest duration observed in June. The range of average annual accumulated daily insolation was 11.98-17.65 MJ·m-2. The range of average daily external DLI calculated from the insolation and solar time data was 22.3-36.1 mol·m-2·d-1, and the annual cumulative DLI was 8,156-13,175 mol·m-2·d-1. Both the insolation and DLI values were the highest in 2016 and lowest in 2020. Based on the PPFD required for ginseng growth (111-185 µmol·m-2·s-1), the monthly average daily DLI and monthly cumulative DLI were 3.51-5.87 and 82-228 mol·m-2·d-1, respectively. The range of five-year average value for the external monthly cumulative DLI was 298-1,459 mol·m-2·d-1, and the monthly cumulative DLI values when a black double shading film and blue-white shading film were applied were 101-496 and 36-175 mol·m-2·d-1, respectively. A comparative analysis of DLI values indicated that shading was required to ginseng growth throughout the year under natural light. When the black double shading film was used, shading was required from March to October. When the blue-white shading film was applied from April to August, (i.e., the period with active ginseng growth) the appropriate DLI for ginseng growth could be continuously maintained. Regional weather differences due to climate change are gradually increasing, and even in one region, monthly and cumulative DLI values are different every year. Therefore, in order to implement a precise agricultural environment for ginseng cultivation, precise analysis and continuous research using agricultural weather sensor big data is required.

Design of Temperature Compensation Circuit for Satisfying the Intermodulation Specification of Power Amplifier (전력증폭기의 혼변조 규격 만족을 위한 온도보상회로 설계)

  • Park, Won-Woo;Kim, Byung-Chul;Cho, Kyung-Rae;Lee, Jae-Buom
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2609-2614
    • /
    • 2010
  • Temperature compensation circuit is implemented by using the temperature sensor, and Intermodulation (IM) Specification of Power Amplifier is satisfied in the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$ with this temperature compensation circuit. The output voltage of temperature compensation circuit which vary 170mV with the temperature is applied to the gate of TR in 3W output power Amplifier. As the result, right 3rd IM component is -18.5~-26dBm, left 3rd IM component is -18.5~-35dBm, and the left and right 5th IM component is -24~-26dBm in the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$. It is confirmed that IM specification of power amplifier which is under -17dBm in the whole temperature range is satisfied.

Simulation of Ladar Range Images based on Linear FM Signal Analysis (Linear FM 신호분석을 통한 Ladar Range 영상의 시뮬레이션)

  • Min, Seong-Hong;Kim, Seong-Joon;Lee, Im-Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.87-95
    • /
    • 2008
  • Ladar (Laser Detection And Ranging, Lidar) is a sensor to acquire precise distances to the surfaces of target region using laser signals, which can be suitably applied to ATD (Automatic Target Detection) for guided missiles or aerial vehicles recently. It provides a range image in which each measured distance is expressed as the brightness of the corresponding pixel. Since the precise 3D models can be generated from the Ladar range image, more robust identification and recognition of the targets can be possible. If we simulate the data of Ladar sensor, we can efficiently use this simulator to design and develop Ladar sensors and systems and to develop the data processing algorithm. The purposes of this study are thus to simulate the signals of a Ladar sensor based on linear frequency modulation and to create range images from the simulated Ladar signals. We first simulated the laser signals of a Ladar using FM chirp modulator and then computed the distances from the sensor to a target using the FFT process of the simulated signals. Finally, we created the range image using the distances set.

  • PDF

3D Range Measurement using Infrared Light and a Camera (적외선 조명 및 단일카메라를 이용한 입체거리 센서의 개발)

  • Kim, In-Cheol;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1005-1013
    • /
    • 2008
  • This paper describes a new sensor system for 3D range measurement using the structured infrared light. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and the projected infrared light are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Identification of the cells from the pattern is the key issue in the proposed method. Several methods of correctly identifying the cells are discussed and verified with experiments.

Dual-Sensitivity Mode CMOS Image Sensor for Wide Dynamic Range Using Column Capacitors

  • Lee, Sanggwon;Bae, Myunghan;Choi, Byoung-Soo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • A wide dynamic range (WDR) CMOS image sensor (CIS) was developed with a specialized readout architecture for realizing high-sensitivity (HS) and low-sensitivity (LS) reading modes. The proposed pixel is basically a three-transistor (3T) active pixel sensor (APS) structure with an additional transistor. In the developed WDR CIS, only one mode between the HS mode for relatively weak light intensity and the LS mode for the strong light intensity is activated by an external controlling signal, and then the selected signal is read through each column-parallel readout circuit. The LS mode is implemented with the column capacitors and a feedback structure for adjusting column capacitor size. In particular, the feedback circuit makes it possible to change the column node capacitance automatically by using the incident light intensity. As a result, the proposed CIS achieved a wide dynamic range of 94 dB by synthesizing output signals from both modes. The prototype CIS is implemented with $0.18-{\mu}m$ 1-poly 6-metal (1P6M) standard CMOS technology, and the number of effective pixels is 176 (H) ${\times}$ 144 (V).

3D shape reconstruction using laser slit beam and image block (레이저슬릿광과 이미지블럭을 이용한 경면물체 형상측정알고리즘)

  • 곽동식;조형석;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.93-96
    • /
    • 1996
  • Structured laser light is a widely used method for obtaining 3D range information in Machine Vision. However, The structured laser light method is based on assumption that the surface of objects is Lambertian. When the observed surfaces are highly specularly reflective, the laser light can be detected in various parts on the image due to a specular reflection and secondary reflection. This makes wrong range data and the image sensor unusable for the specular objects. To discriminate wrong range data from obtained image data, we have proposed a new algorithm by using the cross section of image block. To show the performance of the proposed method, a series of experiments was, carried out on: the simple geometric shaped objects. The proposed method shows a dramatic improvement of 3D range data better than the typical structured laser light method.

  • PDF

Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems

  • Taylor, Stuart G.;Farinholt, Kevin M.;Park, Gyuhae;Todd, Michael D.;Farrar, Charles R.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.661-673
    • /
    • 2010
  • This paper presents recent developments in an extremely compact, wireless impedance sensor node (the WID3, $\underline{W}$ireless $\underline{I}$mpedance $\underline{D}$evice) for use in high-frequency impedance-based structural health monitoring (SHM), sensor diagnostics and validation, and low-frequency (< ~1 kHz) vibration data acquisition. The WID3 is equipped with an impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using a microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog-to-digital and digital-to-analog converters so that the same device can measure structural vibration data. The compact sensor node collects relatively low-frequency acceleration measurements to estimate natural frequencies and operational deflection shapes, as well as relatively high-frequency impedance measurements to detect structural damage. Experimental results with application to SHM, sensor diagnostics and low-frequency vibration data acquisition are presented.