• 제목/요약/키워드: 3D printing product design

검색결과 62건 처리시간 0.026초

SLS 방식의 3D 프린팅 기술을 활용한 직물구조적인 디자인설계 연구 -유연성 있는 직조구조 직물설계를 중심으로- (Study on the Textile Structural Design using SLS 3D Printing Technology -Focused on Design of Flexible Woven Fabric Structure-)

  • 송하영
    • 패션비즈니스
    • /
    • 제23권3호
    • /
    • pp.67-84
    • /
    • 2019
  • Since the early 2000s, various fashion design products that use 3D printing technology have constantly been introduced to the fashion industry. However, given the nature of 3D printing technology, the flexible characteristics of material of textile fabrics is yet to be achieved. The aim of this study is to develop the optimal design conditions for production of flexible and elastic 3D printing fabric structure based on plain weave, which is the basic structure in fabric weaving using SLS 3D printing technology. As a the result this study aims to utilize appropriate design conditions as basic data for future study of flexible fashion product design such as textile material. Weaving structural design using 3D printing is based on the basic plain weave, and the warp & weft thickness of 4mm, 3mm, 2mm, 1.5mm, 1mm, and 0.7mm as expressed in Rhino 6.0 CAD software program for making a 3D model of size $1800mm{\times}180mm$ each. The completed 3D digital design work was then applied to the EOS SLS Machine through Maker ware, a program for 3D printer output, using polyamide 12 material which has a rigid durability strength, and the final results obtained through bending flexibility tests. In conclusion, when designing the fabric structure design in 3D printing using SLS method through application of polyamide 12 material, the thickness of 1 mm presented the optimal condition in order to design a durable digital textile structure with flexibility and elasticity of the 3D printing result.

Temperature Analysis of Nozzle in a FDM Type 3D Printer Through Computer Simulation and Experiment

  • Park, Jung Hyun;Lyu, Min-Young;Kwon, Soon Yong;Roh, Hyung Jin;Koo, Myung Sool;Cho, Sung Hwan
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.301-307
    • /
    • 2016
  • Additive manufacturing (AM), so called 3D Printing is a new manufacturing process and is getting attraction from many industries. There are several methods of 3D printing. Among them fused deposition modeling (FDM) type is most widely used by reason of cheap maintenance, easy operation and variety of polymeric materials. Articles manufactured by 3D printing have weak deposition strength compared with conventionally manufactured products. Deposition strength of FDM type 3D printed article is highly dependent of deposition temperature. Subsequently the nozzle temperature in the FDM type 3D printing is very important and it is controlled by heat source in the 3D printer. Nozzle is connected with heat block and barrel, and heat block contains heat source. Nozzle becomes hot through heat conduction from heat source. Nozzle temperature has been predicted for various thermal boundary conditions by computer simulation and compared with experimental measurement. Nozzle temperature highly depends upon thermal conductivities of heat block and nozzle. Simulation results are good agreement with experiment.

The Domestic Trend of Studies on 3D Printing Technology Applied to the Fashion Industry

  • Choi, Jeongwook;Park, Sanghee
    • 패션비즈니스
    • /
    • 제24권6호
    • /
    • pp.80-88
    • /
    • 2020
  • This study, by analyzing previous studies, aimed to understand how 3D printing technology is applied and utilized in the fashion industry and to contribute to encouraging further studies on 3D printing technology in the fashion sector and suggesting proper ways for designing such studies. Firstly, 47 papers were selected from all literature concerning 3D printing technology published in 15 journals of fashion and design since 2013. Afterwards, these papers were analyzed with regard to the frequency, topics or sectors, and purposes or types of studies shown by outcomes. Results were as follows: First, the number of papers on 3D printing technology published in the journals was counted according to the year, which showed that this number increased rapidly after 2015 for about 3 years. Especially in the year 2016, this increase was quite notable. Although a little decrease in this number was found afterwards, a steady increase was highly expected. Out of the 8 journals, Journal of The Korean Society of Fashion Design had the maximum papers. Regarding areas of studies, works on designing and development of products were most common. Finally, regarding the purpose of studies, those suggesting or presenting apparel were predominant. Product items included clothes, shoes, and caps. Studies on caps mostly covered designing the products. Studies on clothes aimed at designing, characteristics of construction, and case study. However, there were very few works on 3D printing technology as an alternative material or composition of clothing.

3D 프린팅 환경에서 개인 맞춤형 컨트롤러 제품디자인 구매 의도의 영향요인에 관한 연구 (Influence Factors of Intent to Purchase Personalized Controller Product Design in 3D Printing Environment)

  • 박준홍;이준상
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.873-878
    • /
    • 2020
  • 최근 3D 프린터의 발전으로 인하여 3D 프린팅에 대한 관심이 커지고 있다. 3D 프린팅은 사용자의 요구특성에 맞도록 제품을 설계하여 개인의 욕구와 다양한 요건들이 반영되어야 한다. 3D 프린팅 제품이 사용자의 요구특성에 따른 제품 구매 의도에 관한 활용방안 연구는 미흡하다. 따라서 본 연구는 3D 프린팅 환경에서 개인 맞춤형 컨트롤러 제품 구매 의도의 영향요인에 대하여 알아보기 위하여 설문조사 및 통계분석 하였다. 연구결과 사용자의 혁신성과 편의성 안전성이 개인 맞춤형 컨트롤러 제품의 만족과 구매 의도에 중요한 요소임을 확인하였다. 3D 프린팅을 활용한 컨트롤러 제품 제작 시 사용자의 혁신성과 편의성, 안전성을 고려한다면 개인 맞춤형 컨트롤러제작의 가치를 높일 수 있을 것으로 예상된다. 개인 맞춤형 제품의 생산방식을 초기에 성공적으로 도입하고 이를 구체적이고 체계적으로 지원하는 개인 맞춤형 제품 개발 프레임워크에 관한 연구가 필요하다.

SLS 3D 프린팅 기술을 적용한 직물 유연성이 발현된 직물구조적인 설계디자인 (Textile Structural Design with Fabric Flexibility using SLS 3D Printing Technology)

  • 송하영
    • 패션비즈니스
    • /
    • 제24권3호
    • /
    • pp.85-100
    • /
    • 2020
  • Recently, 3D printing technology, which is suitable for small-volume production of many varieties, has become considered a key manufacturing technology in the 4th industrial revolution. However, the nature of 3D printing technology means it is not yet able to be applied to traditional textiles due to Fabric Flexibility. The aim of this study is to investigate Textile Structural Design by finding the optimal yarn thickness for Selective Laser Sintering (SLS) 3D printed structures on geogrid dobby woven fabric that gives the optimal flexibility and tensile strength in the final product. The test results for tensile load strength of the 3D printed test samples, using 1.0mm, 0.8mm, 0.6mm and 0.4mm yarn thicknesses, showed that all were found to be above 250N, this higher than the tensile strength of 180N that is recommended for textile products. Based on these results, the four dobby structural patterns with 3D printing produced had four yarn thicknesses: 1.0mm, 0.8mm, 0.6mm, and 0.4mm. The thinner the yarn, the more flexible the fabric; as such the optimal conditions to produce SLS-based 3D printed textiles with suitable strength and flexibility used a thickness of yarn in the range of 0.4mm to 0.6mm.

Cross-section Morphology and Surface Roughness of an Article Manufactured by Material Extrusion-type 3D Printing according to the Thermal Conductivity of the Material

  • Woo, In Young;Kim, Do Yeon;Kang, Hong Pil;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제55권1호
    • /
    • pp.46-50
    • /
    • 2020
  • Material extrusion (ME)-type 3D printing is the most popular among the 3D printing processes. In this study, the cross-section morphologies of ME-type 3D printing manufactured specimens were observed with respect to the thermal properties of the material. The cross-section morphology of a specimen is related to the deposition strength, and the outside profile of the cross-section is related to the surface roughness. The filaments used in this study, with different thermal conductivities, were the acrylonitrile-butadiene-styrene (ABS), the high impact polystyrene (HIPS), the glycol-modified polyethylene terephthalate (PETG), and the polylactic acid (PLA). The cross-sections and the surfaces of the 3D manufactured specimens were examined. In ME-type 3D printing, the filaments are extruded through a nozzle and they form a layer. These layers rapidly solidify and as a result, they become a product. The thermal conductivity of the material influences the cooling and solidification of the layers, and subsequently the cross-section morphology and the surface roughness.

Computer Aided Process Planning for 3D Printing

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.148-154
    • /
    • 2015
  • Computer aided process planning (CAPP) keeps an important role between the design and manufacturing engineering processes. A CAPP system is a digital link between a computer aided design (CAD) model and manufacturing instructions. CAPP have been researched and applied in manufacturing filed, however, one manufacturing area where CAPP has not been extensively researched is rapid prototyping (RP). RP is a technique for creating directly a three dimensional CAD data into a physical prototype. RP enables to build physical models automatically and to use to reduce the time for the product development cycle as well as to improve the final quality of the designed product. Three-dimensional (3D) printing is one kind of RP that creates three-dimensional objects from CAD models. The paper presents a computer aided process planning system for printing medical products. 3D printing has been used to solve complex medical problems such as surgical instruments, bioengineered products, medical implants, and surgical guides.

3D 프린팅 기술을 적용한 맞춤형 슈즈디자인 특성에 관한 연구 (A Study on the Customization of Shoes Design Characteristics with 3D Printing Technology)

  • 박준홍;이준상
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.516-517
    • /
    • 2019
  • 3D 프린팅 기술은 가상 혹은 평면에 설계된 디자인을 입체적으로 출력이 가능하다는 점에서 핵심적 기술로 주목받아 오고 있다. 본 연구는 슈즈에 관한 개념을 1차적으로 정리하여 일반적 제조과정을 분석하고, 3D 프린팅이 적용된 슈즈제작과정을 제시하고, 생산되는 슈즈 사례들을 브랜드별(스포츠 브랜드, 디자이너 브랜드)로 구분하여 맞춤형 제작 특성을 연구하였다. 사례 분석을 통해 3D 프린팅 슈즈의 4가지 디자인 제작 특성을 도출했다. 따라서 본 연구는 향후 3D 프린팅을 활용한 슈즈디자인 영역에서 보다 심화된 창조적 발상의 근거를 제시할 것으로 사료된다.

  • PDF

식품 3D-프린팅 기술과 식품 산업적 활용 (Food 3D-printing Technology and Its Application in the Food Industry)

  • 김종태;맹진수;신원선;심인철;오승일;조영희;김종훈;김철진
    • 산업식품공학
    • /
    • 제21권1호
    • /
    • pp.12-21
    • /
    • 2017
  • Foods are becoming more customized and consumers demand food that provides great taste and appearance and that improves health. Food three-dimensional (3D)-printing technology has a great potential to manufacture food products with customized shape, texture, color, flavor, and even nutrition. Food materials for 3D-printing do not rely on the concentration of the manufacturing processes of a product in a single step, but it is associated with the design of food with textures and potentially enhanced nutritional value. The potential uses of food 3D-printing can be forecasted through the three following levels of industry: consumer-produced foods, small-scale food production, and industrial scale food production. Consumer-produced foods would be made in the kitchen, a traditional setting using a nontraditional tool. Small-scale food production would include shops, restaurants, bakeries, and other institutions which produce food for tens to thousands of individuals. Industrial scale production would be for the mass consumer market of hundreds of thousands of consumers. For this reason, food 3D-printing could make an impact on food for personalized nutrition, on-demand food fabrication, food processing technologies, and process design in food industry in the future. This article review on food materials for 3D-printing, rheology control of food, 3D-printing system for food fabrication, 3D-printing based on molecular cuisine, 3D-printing mobile platform for customized food, and future trends in the food market.

3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로 (A review of 3D printing technology for piezoresistive strain/loadcell sensors)

  • 조정훈;문현우;김성용;최백규;오광원;정관영;강인필
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.388-394
    • /
    • 2021
  • The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.