• Title/Summary/Keyword: 3D printed

Search Result 671, Processing Time 0.022 seconds

Development of 3D Printed Snack-dish for the Elderly with Dementia (3D 프린팅 기술을 활용한 치매노인 전용 영양(수분)보충 식품섭취용기 개발)

  • Lee, Ji-Yeon;Kim, Cheol-Ho;Kim, Kug-Weon;Lee, Kyong-Ae;Koh, Kwangoh;Kim, Hee-Seon
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2021
  • Objectives: This study was conducted to create a 3D printable snack dish model for the elderly with low food or fluid intake along with barriers towards eating. Methods: The decision was made by the hybrid-brainstorming method for creating the 3D model. Experts were assigned based on their professional areas such as clinical nutrition, food hygiene and chemical safety for the creation process. After serial feedback processes, the grape shape was suggested as the final model. After various concept sketching and making clay models, 3D-printing technology was applied to produce a prototype. Results: 3D design modeling process was conducted by SolidWorks program. After considering Dietary reference intakes for Koreans (KDRIs) and other survey data, appropriate supplementary water serving volume was decided as 285 mL which meets 30% of Adequate intake. To consider printing output conditions, this model has six grapes in one bunch with a safety lid. The FDM printer and PLA filaments were used for food hygiene and safety. To stimulate cognitive functions and interests of eating, numbers one to six was engraved on the lid of the final 3D model. Conclusions: The newly-developed 3D model was designed to increase intakes of nutrients and water in the elderly with dementia during snack time. Since dementia patients often forget to eat, engraving numbers on the grapes was conducted to stimulate cognitive function related to the swallowing and chewing process. We suggest that investigations on the types of foods or fluids are needed in the developed 3D model snack dish for future studies.

Study for applying the augmented reality onto postage stamps (우표의 증강현실 적용에 관한 연구)

  • Lee, Ki Ho
    • Cartoon and Animation Studies
    • /
    • s.33
    • /
    • pp.503-529
    • /
    • 2013
  • The commemorative AR postage stamps which are the world first presented at The YEOSU EXPO 2012 has had meaning of communicating with future in this present from a convergence that the most analog medium is using now and that the AR is cutting edge of digital technology. The AR stamps printed 10 kind out of 33 commemorative stamps. These have great significance that is artistic value than that is world first. The applied AR images are not only expressed 3D real images but also artic represented and signifying each stamp images from visualized creativity process, and build 'new art space' that is new concept between on real(analog) and virtual(digital). This study analyzes meaning of images and then makes concept of AR contents design. The processing is designed and considered the meaning of architectures and environments, and the regional specific feature of the Yeosu with surrealistic graphic concept. The 10 of deducted images were expressed after AR coding such as visual arts. This study realized markerless 3D image tracking AR stamps and deducted research result are; the first, it was able to figure out how to realize AR in the process of registering the reference images, coordinating transformation, and hybriding AR on the stamps for the mobile devices. The second, it was able to be seeked a possibility of new virtual exhibition space. The third, it was able to know possibility of satisfaction of immersing with visual formativeness and usability with informativity.

A study on the fatigue characteristics of SLS 3D printed PA2200 according to uniaxial cyclic tensile loading (SLS 3D 프린터를 이용하여 제작된 PA2200의 단축 반복 인장하중에 따른 피로 특성에 관한 연구)

  • Park, Jun-Soo;Jeong, Eui-Chul;Choi, Han-Sol;Kim, Mi-Ae;Yun, Eon-Gyeong;Kim, Yong-Dae;Won, Si-Tae;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the fatigue behavior and fatigue life characteristics of PA2200 specimens fabricated by SLS 3D printer were studied. Fatigue tests were performed according to the standard specification (ASTM E468) and fatigue life curves were obtained. In order to perform the fatigue test, mechanical properties were measured according to the test speed of the simple tensile test, and the self-heating temperature of the specimen according to the test speed was measured using an infrared temperature measuring camera in consideration of heat generation due to plastic deformation. There was no significant difference within the set test speed range and the average self-heating temperature was measured at 38.5 ℃. The mechanical strength at the measured temperature showed a relatively small difference from the mechanical strength at room temperature. Fatigue test conditions were established through the preceding experiments, and the loading conditions below the tensile strength at room temperature 23 ℃ were set as the cyclic load. The maximum number of replicates was less than 100,000 cycles, and the fracture behavior of the specimens with the repeated loads showed the characteristics of Racheting. It was confirmed that SLS 3D printing PA2200 material could be applied to the Basquin's S-N diagram for the fatigue life curve of metal materials. SEM images of the fracture surface was obtained to analyze the relationship between the characteristics of the fracture surface and the number of repetitions until failure. Brittle fracture, crazing fracture, grain melting, and porous fracture surface were observed. It was shown that the larger the area of crazing damage, the longer the number of repetitions until fracture.

Development of Power Supplies for Radiation Monitoring System and Process Control System of Korean-type Standard Nuclear Pourer Plants (한국형 표준원전의 방사선감시계통 및 공정제어계통 전원공급기 국산화 개발)

  • Roh, J.H.;Kwon, Y.G.;Jang, D.S.;Oh, C.Y.;Lee, C.H.;Kim, Y.K.;Ju, D.S.;Cho, H.M.;Park, W.G.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.515-517
    • /
    • 2008
  • 현재 가동 중인 원자적발전소 계측제어설비의 전원공급기를 살펴보면 인버터 또는 별도의 교류를 입력전원으로 사용한다. 직류 전원공급기들은 설비의 중요도예 따라 이중화로 구성된 설비도 있고 그렇지 않은 기기나 설비도 있다. 이중화로 구성된 전원공급기라 해도 교류 입력전원이 동일하다면 교류 입력이 상실될 때 이중화로 구성된 직류전원도 상실되어 관련계통의 가동이 정지된다. 이러한 문제점을 해결하기 위해서는 각기 다른 교류입력전원으로 동작되는 이중화전원공급기로 구성되는 것이 가장 바람직하다. 본 연구개발의 목적은 두 종의 설비에 소요되는 3종의 직류전원 공급기를 원자력 안정성등급으로 국산화하는 연구이다. 기존 제품들은 3종 모두 리니어 방식의 제품이지만, 방사선감시 계통 현장제어기의 5V로직 전원공급기와 공정제어계통 전원공급자는 전력변환효율이 높고 소형, 정량화가 가능한 SMPS(Switched Mode Power Supply) 방식으로 개발하였다. 방사선감시계통 현장제어기의 PCA(Printed Circuit Assembly) 저전압공급기는 다양한 종류의 출력전압과 저 전류형이므로 안정성 면에서 동일한 형식의 리니어 방식으로 개발하였으며 3종류 모두 출력용량을 20% 이상 향상시켰다. 또한, 논문을 통해 SMPS 방식의 전원공급기의 핵심 부품인 Control Module을 Hybrid IC형으로 자체 설계하여 성능이 우수한 제품을 지속적으로 생산할 수 있는 기틀을 마련하고자 한다.

  • PDF

Preparation and Dielectric Behavior of D-Glass with Different Boron Contents (보론함량에 따른 D-glass의 유전율 특성)

  • Jeong, Bora;Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Shin, Dongwook;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.39-42
    • /
    • 2017
  • E-glass (electrical glass) fiber is the widely used as a reinforced composite material of PCBs (printed circuit boards). However, E-glass fiber is not stable because it has a dielectric constant of 6~7. On the other hand, D-glass (dielectric glass) fiber has a low dielectric constant of 3~4.5. Thus, it is adaptable for use as a reinforcing material of PCBs. In this study, we fabricated D-glass compositions with low dielectric constant, and measured the electrical and optical properties. In the glass composition, the boron content was changed from 9 to 31 wt%. To confirm the dependence of the dielectric constant on melting properties, D-glass with 22 wt% boron was melted at $1550^{\circ}C$ and $1650^{\circ}C$ for 2hrs. The glass melted at $1650^{\circ}C$ had a lower dielectric constant than the glass melted at $1550^{\circ}C$. Therefore, the D-glass with boron of 9~31 wt% was fabricated by melting at $1650^{\circ}C$ for 2hrs, and transparent clear glass was obtained. We identified the non-crystalline nature of the glass using an XRD (x-ray diffractometer) graph. The visible light transmittance values depending on the boron contents were measured and found to be 88.6 % ~ 82.5 %. Finally, the dielectric constant of the D-glass with 31 wt% boron was found to have decreased from 4.18 to 3.93.

Making Aids of Magnetic Resonacnce Image Susing 3D Printing Technology (3D 프린트를 활용한 자기공명영상검사 보조기구 제작)

  • Choi, Woo jeon;Ye, Soo young;Kim, Dong hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.403-409
    • /
    • 2016
  • MRI scan is a useful method in the diagnosis of musculoskeletal excellent contrast of the organization. Depending on the patient's musculoskeletal examinations state the type of aids provided the aid is used there is also challenging as well as the costs do not vary. This study was produced by the use of 3D printing technology, an MRI aids. Aids in the production process, then through 3D modeling and then convert stl files using (3D MAX.2014, Fusion360) slicing programs (Cubicreater 2.1ver., Cura 15.4ver) converted to G-code printed on the FDM scheme (Cubicon Style, output was MICRO MAKE). Output is, but in the FDM to evaluate the SNR on the MRI images were compared to the test is the case before use, and then to produce a Water Phantom case of a PLA, ABS, a TPU thickness 3mm, using aids before, It was evaluated in a clinical image after qualitatively. Obtaining an image of SNR Warter Phantom appeared to have been evaluated as T1 NON $123.778{\pm}28.492$, PLA $123.522{\pm}28.373$, ABS $124.461{\pm}25.716$, TPU $124.843{\pm}27.272$. T2 NON $127.421{\pm}26.949$, was rated as PLA $124.501{\pm}27.768$, ABS $128.663{\pm}26.549$, TPU $130.171{\pm}25.998$. The results did not show statistically significant differences. The use of assistive devices before and after images Clinical evaluation method palliative $3.20{\pm}0.88$, $3.95{\pm}0.76$ after using the aids used to aid improved the quality of the image. Production of the auxiliary mechanism using a future 3D printing is expected are thought to be used clinically, it can be an aid making safe and comfortable than the inspection of the patient is an alternative to improve the problems of the aids used in the conventional do.

Fabrication and Properties of D-Glass Fiber with Low Dielectric Constant (저유전율을 가지는 D-Glass Fiber의 제조 및 특성)

  • Jeong, Bora;Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Shin, Dongwook;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.254-259
    • /
    • 2018
  • General D-glass(Dielectric glass) fibers are adaptable to PCBs(Printed circuit boards) because they have a low dielectric constant of about 3.5~4.5. However, very few papers have appeared on the physical characteristics of D-glass fibers. D-glass fibers were fabricated via continuous spinning process using bulk D-glass. In order to fabricate the D-glass, raw materials were put into a Pt crucible, melted at $1650^{\circ}C$ for 2 hrs, and then annealed at $521{\pm}10^{\circ}C$ for 2 hrs. We obtained transparent clear glass. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1368^{\circ}C$ to $1460^{\circ}C$, while the winder speed was between 100 rpm and 200 rpm. We investigated the physical properties of the D-glass fibers. The average diameters of the glass fibers were measured by optical microscope and FE-SEM. The average diameters of the D-glass fibers were 21.36 um at 100 rpm and 34.06 um at 200 rpm. The mechanical properties of the fibers were confirmed using a UTM(Universal materials testing machine). The average tensile strengths of the D-glass fibers were 467.03 MPa at 100 rpm and 522.60 MPa at 200 rpm.

Microstrip Slot Array Antenna Design by Using Tansmission Line Model (전송선로 모델을 이용한 마이크로스트립 슬롯 배열 안테나 설계)

  • 한석진;박익모;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.610-618
    • /
    • 2000
  • A T-shaped microstripline -fed printed slot antenna is anlayzed by using the transmission line model(TLM) in this paper. Microstrip-slotline junction is modeled by employing a transformer and the transformer turn ratio is derived empirically. The method is extended to the case of $1\times2,l\times4$array antennas. Return loss results obtained by using the transmission line model. The maximum measured results and demonstrated the usefulness of the transmission line model. The maximum bandwidths of a single antenna, $1\times2,l\times4$ array antennas are 28.5%, 47.8%, and 50.9%, respectively, for the VSWR$\leq2$. The gain of $1\times4$ array antenna is 7.97dBi and the beamwidth is about $27^{\circ}$.

  • PDF

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Restoration of the Chimi Excavated from the Busosan Temple Site in Buyeo and Study of Its Production Techniques (부여 부소산사지 출토 치미의 재 복원을 통한 제작기법)

  • Hwang, Hyunsung;Na, Ahyoung
    • Conservation Science in Museum
    • /
    • v.27
    • /
    • pp.1-22
    • /
    • 2022
  • A chimi(a roof ridge decoration) excavated from the Busosan Temple Site in Buyeo was restored in 1978 at the Buyeo Museum. The gypsum restoration material had deteriorated over time and part of it was seriously damaged and unable to bear the weight of the chimi. The chimi features traces of emergency treatment revealing that the inside of the body and some portions of the tail were reinforced several times using epoxy resin. A condition survey performed in preparation for its transfer for an exhibition found the lower body and wings of the chimi to be highly vulnerable and it was determined that the chimi needed further restoration. The dismantling of the chimi for restoration revealed several elements that provide clues to the production techniques applied by its makers, so they were subjected to inspection. This study explores the production techniques used in the chimi from the Busosan Temple Site that were revealed during the process of dismantling it for restoration. The chimi was inspected using 3D scanning and its rigid vertical shape was restored to a natural form based on the production techniques identified during the dismantling process. The existing restoration material was replaced to improve durability. 3D printed elements were produced based on 3D modelling and were joined to the original chimi to correct its shape and fill in the missing parts, restoring the chimi to its original appearance.