• 제목/요약/키워드: 3D printed

검색결과 665건 처리시간 0.025초

3D프린팅을 이용한 편성물의 역학적 특성 연구 -PLA, TPU 필라멘트를 중심으로- (A Study on the Mechanical Properties of Knit Fabric Using 3D Printing -Focused on PLA, TPU Filament-)

  • 한유정;김종준
    • 패션비즈니스
    • /
    • 제22권4호
    • /
    • pp.93-105
    • /
    • 2018
  • Using FDM 3D printing, yarn shape and composition were modeled and 3D printed with PLA and TPU filaments currently used for apparel. Based on this, mechanical characteristics were measured to determine 3D printing yarn according to type of filaments in the 3D printed output and deformation and recovery characteristics due to differences in structure type. As a result of examining tensile and shear characteristics of PLA and TPU 3D printing compiles, TPU overall was measured with significantly lower stress than PLA. This is due to high elasticity of TPU's character, revealing that it has better flexibility than PLA. In addition, during deformation due to external forces, the more freedom between the head and foot parts of the loop, and the lower the force associated with each other, the more flexible it is. TPU revealed that it was easier to tension and recovery from tensile deformation than PLA, indicating potential for clothing materials using 3D printing. If high-molecular materials, such as PLA flexibility, it is likely to provide some flexibility through development of styles, including degree of freedom in modeling. Based on this, we provide basic data for developing 3D printing textures that can be satisfied with textile for apparel.

초소형 가스터빈 엔진용 금속 3D 프린팅 연소기 성능 시험 (Performance Test of Metal 3D Printed Micro Gas Turbine Engine Combustor)

  • 김재호;김형모;박부민;이동호
    • 한국추진공학회지
    • /
    • 제23권6호
    • /
    • pp.51-58
    • /
    • 2019
  • 본 연구에서는 소형 무인기에 사용되는 초소형 가스터빈 엔진의 연소기를 3D 프린팅으로 제작하고, 시험 설비와 리그를 제작하여 연소기 단품 성능시험을 수행하였다. 연소기 성능시험은 두 가지 부하조건에서 당량비를 조절하여 각 부하조건 별 4가지 시험조건에서 수행하였다. 성능시험 결과 연소기의 압력손실과 출구온도분포는 우수하였지만, 연소가스에서 다량의 UHC와 CO가 검출되어 연소효율은 일반적인 가스터빈 연소기에 비해 아주 낮음을 확인하였다. 성능시험을 통해 획득한 정량적 성능데이터는 향후 3D 프린팅 기술로 성능이 개선된 연소기의 설계와 제작에 활용 할 예정이다.

3D Printed Flexible Cathode Based on Cu-EDTA that Prepared by Molecular Precursor Method and Microwave Processing for Electrochemical Machining

  • Yan, Binggong;Song, Xuan;Tian, Zhao;Huang, Xiaodi;Jiang, Kaiyong
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.180-186
    • /
    • 2020
  • In this work, a metal-ligand solution (Cu-EDTA) was prepared based on the molecular precursor method and the solution was spin-coated onto 3D printed flexible photosensitive resin sheets. After being processed by microwave, a laser with a wavelength of 355 nm was utilized to scan the spin-coated sheets and then the sheets were immersed in an electroless copper plating solution to deposit copper wires. With the help of microwave processing, the adhesion between copper wires and substrate was improved which should result from the increase of roughness, decrease of contact angle and the consistent orientation of coated film according to the results of 3D profilometer and SEM. XPS results showed that copper seeds formed after laser scanning. Using the 3D printed flexible sheets as cathode and galvanized iron as anode, electrochemical machining was conducted.

3D 프린터로 제작하는 마우스가드 (3D Printed customized sports mouthguard)

  • 류재준;이수영
    • 대한치과의사협회지
    • /
    • 제58권11호
    • /
    • pp.700-712
    • /
    • 2020
  • The conventional mouthguard fabrication process consists of elastomeric impression taking and followed gypsum model making is now into intraoral scanning and direct mouthguard 3D printing with an additive manufacturing process. Also, dental professionals can get various diagnostic data collection such as facial scans, cone-beam CT, jaw motion tracking, and intraoral scan data to superimpose them for making virtual patient datasets. To print mouthguards, dental CAD software allows dental professionals to design mouthguards with ease. This article shows how to make 3D printed mouthguard step by step.

  • PDF

혈전 측정용 3D printed chip 설계 및 흡연의 영향 사전 연구 (Design of 3D printed chip for thrombus measurement and feasibility study for smoking effect)

  • 김해빈;염은섭
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.74-79
    • /
    • 2023
  • Thrombogenesis, which is the process of blood clot formation, can be initiated by platelet activation. Excessive formation of blood clot in the bloodstream can lead to thrombosis. Therefore, when dealing with patients with disseminated intravascular coagulation (DIC) or children, it is necessary to use small amounts of blood. Hence, it is important to develop methods for the rapid and accurate measurement of the platelet function using a small amount of blood. In this study, 3D printing technology was utilized to facilitate the production of micro channels. The amount of platelet adhesion in smokers and non-smokers was compared by repeatedly exposing the structure of the channel to adjust the number of blood injections and facilitate thrombosis attachment to simple stenosis structures.

Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides

  • Kim, Sung-woo;Kwak, Jungwon;Cho, Byungchul;Song, Si Yeol;Lee, Sang-wook;Jeong, Chiyoung
    • 한국의학물리학회지:의학물리
    • /
    • 제28권1호
    • /
    • pp.33-38
    • /
    • 2017
  • Creating individualized build-up material for superficial photon beam radiation therapy at irregular surface is complex with rice or commonly used flat shape bolus. In this study, we implemented a workflow using 3D printed patient specific bolus and describe our clinical experience. To provide better fitted build-up to irregular surface, the 3D printing technique was used. The PolyLactic Acid (PLA) which processed with nontoxic plant component was used for 3D printer filament material for clinical usage. The 3D printed bolus was designed using virtual bolus structure delineated on patient CT images. Dose distributions were generated from treatment plan for bolus assigned uniform relative electron density and bolus using relative electron density from CT image and compared to evaluate the inhomogeneity effect of bolus material. Pretreatment QA is performed to verify the relative electron density applied to bolus structure by gamma analysis. As an in-vivo dosimetry, Optically Stimulated Luminescent Dosimeters (OSLD) are used to measure the skin dose. The plan comparison result shows that discrepancies between the virtual bolus plan and printed bolus plan are negligible. (0.3% maximum dose difference and 0.2% mean dose difference). The dose distribution is evaluated with gamma method (2%, 2 mm) at the center of GTV and the passing rate was 99.6%. The OSLD measurement shows 0.3% to 2.1% higher than expected dose at patient treatment lesion. In this study, we treated Mycosis fungoides patient with patient specific bolus using 3D printing technique. The accuracy of treatment plan was verified by pretreatment QA and in-vivo dosimetry. The QA results and 4 month follow up result shows the radiation treatment using 3D printing bolus is feasible to treat irregular patient skin.

물시멘트비와 프린팅 시간간격에 따른 3D 프린팅 콘크리트 레이어의 전단부착강도 (Shear Bond Strength of 3D Printed Concrete Layers According to Water Cement Ratio and Printing Time Gap)

  • 김진호;이윤정;정호성;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권6호
    • /
    • pp.199-208
    • /
    • 2021
  • 3D 프린팅 콘크리트의 출력성능 및 부재 강도는 물시멘트비(Water cement ratio, W/C)와 레이어의 프린팅 시간 간격(Printing Time Gap, PTG)에 의하여 큰 영향을 받을 수 있다. 이 연구에서는 W/C와 PTG를 변수로 하여 제작된 프린팅실험체와 몰드 실험체의 표면수분량과 전단부착강도와의 관계를 측정·고찰하였으며, 그 결과, 레이어표면수분량이 전단부착강도에 큰 영향을 주는 것으로 나타났다. 따라서, 3D 프린팅 출력 시 요구되는 레이어 계면 전단부착성능을 확보하기 위해서는 PTG에 따라 적절한 레이어표면수분량이 유지될 수 있도록 유의해야 하며, 레이어표면수분량에 영향을 줄 수 있는 여러 가지 프린팅 환경인자들 대한 후속 연구도 필요할 것으로 판단된다.

3D 프린터용 복합재료 연구 동향 (3D Printable Composite Materials: A Review and Prospective)

  • 오은영;이진우;서종환
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.192-201
    • /
    • 2018
  • 3D 프린팅 기술의 활용은 복잡한 형상의 제품을 보다 손쉽게 생산 가능하게 하며, 시간적 경제적 이점을 제공함으로써 기존 제조업의 형태를 변화시킬 차세대 핵심 제조 기술로 부상하고 있다. 그러나 순수 고분자 소재 출력물의 기계적/전기적 특성 및 기능은 해당 기술의 확산에 있어 한계점으로 작용하였고, 이것은 고성능 고분자 복합재료 개발에 대한 수요로 이어졌다. 이에 본 논문에서는 고성능 3D 프린팅용 고분자 복합재료 개발의 최신 연구 동향을 소개하고, 응용 분야와 가능성 및 향후 연구방향에 대해 논하고자 한다.

Marginal and internal fit of 3D printed provisional crowns according to build directions

  • Ryu, Ji-Eun;Kim, Yu-Lee;Kong, Hyun-Jun;Chang, Hoon-Sang;Jung, Ji-Hye
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권4호
    • /
    • pp.225-232
    • /
    • 2020
  • PURPOSE. This study aimed to fabricate provisional crowns at varying build directions using the digital light processing (DLP)-based 3D printing and evaluate the marginal and internal fit of the provisional crowns using the silicone replica technique (SRT). MATERIALS AND METHODS. The prepared resin tooth was scanned and a single crown was designed using computer-aided design (CAD) software. Provisional crowns were printed using a DLP-based 3D printer at 6 directions (120°, 135°, 150°, 180°, 210°, 225°) with 10 crowns in each direction. In total, sixty crowns were printed. To measure the marginal and internal fit, a silicone replica was fabricated and the thickness of the silicone impression material was measured using a digital microscope. Sixteen reference points were set and divided into the following 4 groups: marginal gap (MG), cervical gap (CG), axial gap (AG), and occlusal gap (OG). The measurements were statistically analyzed using one-way ANOVA and Dunnett T3. RESULTS. MG, CG, and OG were significantly different by build angle groups (P<.05). The MG and CG were significantly larger in the 120° group than in other groups. OG was the smallest in the 150° and 180° and the largest in the 120° and 135° groups. CONCLUSION. The marginal and internal fit of the 3D-printed provisional crowns can vary depending on the build angle and the best fit was achieved with build angles of 150° and 180°.

광중합 방식의 적층 가공으로 제작된 전치과 구치 단일 크라운의 적합도 평가 (Evaluation of fit of anterior and posterior single crowns manufactured by light-curing additive manufacturing)

  • 배은정;이완선
    • 대한치과기공학회지
    • /
    • 제45권3호
    • /
    • pp.74-80
    • /
    • 2023
  • Purpose: This study aimed to evaluate the fit of the anterior and posterior teeth printed using two light-curing three-dimensional (3D) printers. Methods: Anterior and posterior single crowns were designed using dental software and were printed using 2 types of 3D printers, liquid crystal display (LCD) and digital light processing (DLP) (n=40). After the printed crown was scanned again from inside and outside, the prepared teeth were evaluated using a 3D program. To compare the root mean square (RMS) results among groups (α=0.05), the one-way analysis of variance and Tukey's test were used. Results: No statistically significant difference was found between the mean RMS values of the anterior and posterior teeth (p>0.05). However, as a result of comparing the internal, external, and tooth shapes, the DLP group showed significantly low errors in the inner and outer surfaces than LCD group (p<0.05). Conclusion: In terms of clinical acceptance standard of 100 ㎛, the fit of the anterior and posterior teeth fabricated using LCD and DLP was clinically acceptable.