• 제목/요약/키워드: 3D parametric design

검색결과 228건 처리시간 0.029초

Added resistance and parametric roll prediction as a design criteria for energy efficient ships

  • Somayajula, Abhilash;Guha, Amitava;Falzarano, Jeffrey;Chun, Ho-Hwan;Jung, Kwang Hyo
    • Ocean Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.117-136
    • /
    • 2014
  • The increased interest in the design of energy efficient ships post IMO regulation on enforcing EEDI has encouraged researchers to reevaluate the numerical methods in predicting important hull design parameters. The prediction of added resistance and stability of ships in the rough sea environment dictates selection of ship hulls. A 3D panel method based on Green function is developed for vessel motion prediction. The effects of parametric instability are also investigated using the Volterra series approach to model the hydrostatic variation due to ship motions. The added resistance is calculated using the near field pressure integration method.

모듈러 교량 하부구조를 위한 3차원 변수모델의 개발 (Development of 3D Parametric Models for Modular Bridge Substructures)

  • 김동욱;정동기;심창수
    • 한국BIM학회 논문집
    • /
    • 제2권2호
    • /
    • pp.37-45
    • /
    • 2012
  • 부재를 표준화하여 설계 및 제작 생산성을 높이고 기계화 시공을 가능하게 하는 모듈러 교량이 건설 산업에서 중요하게 대두되고 있다. 반복성이 높고 설계, 제작 시공 과정에서의 정보의 원활한 전달이 필요하기 때문에 BIM(Building Information Modeling) 기술에 기반한 변수 모델링 정의를 제시하였다. 모듈러 교량이 갖는 변수 범위를 고려하여 고정변수, 변동변수, 연관변수로 구분하여 정의하고 이를 설계, 해석, 제작에 활용할 수 있도록 하였다. 구조시스템 개발과정의 지식을 정보화하여 3차원 모델의 정확성과 활용성을 높였다.

파라메트릭 디자인 방법론을 적용한 바이오모픽 의상조각 모델링 프로세스와 구성요소 분석 (A study of parametric design methodology for 3D modeling parameters of biomorphic clothing sculpture)

  • 유영선;조민진
    • 한국의상디자인학회지
    • /
    • 제21권2호
    • /
    • pp.109-122
    • /
    • 2019
  • The purpose of this study is to examine the clothing component information and attributes as the control parameters for the 3D modeling process of the biomorphic clothing sculpture using a parametric methodology. The 3D modeling parameters of biomorphic clothing sculpture were identified as exaggerated silhouette, surface texture, and digital color. The types of exaggerated silhouettes were shoulder and hip exaggeration, shoulder exaggeration, hip exaggeration, vertical exaggeration, and horizontal exaggeration. The types of surface texture were embossed, lacy, furry, and complex textures. The types of digital color were chrome, blur, blend, and acid colors. The characteristics of morphological representation due to the attributes of these control variables were identified as morphological variation, organic morphology, organizational morphology, and realistic morphology. As a result, it was found that the parameter attributes were applied to the biomorphic clothing sculpture parametric design process and developed into various shapes.

프로그램 매크로언어를 이용한 해양 플랜트 케이블 트레이의 파라메트릭 설계 도구 개발 (Development of Parametric Design Tool for Offshore Plant Cable Tray Using PML)

  • 김현철
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.632-637
    • /
    • 2019
  • 해양 플랜트 전장생산설계의 케이블 트레이 설계는 구조 부재 및 각종 의장 장비들과 간섭없이 케이블이 설치될 수 있도록 3D 모델링하여 원활하게 최적 배치하는 작업으로, 대부분 PDMS(Plant design management system)를 이용하여 수행되고 있다. PDMS는 해양 플랜트 생산설계 전용 3D CAD 시스템으로 국내 조선소와 관련 설계협력업체에서 널리 사용되고 있다. 본 연구에서는 PDMS 기반 해양 플랜트 케이블 트레이 설계 지원 PML(Programmable macro language)을 개발하여, 기존 방법 대비 업무 효율성을 검토하였다. 개발된 케이블 트레이 설계 PML은 전장 템프릿 라이브러리를 이용하여 완전히 파라메트릭 설계가 가능하도록 함으로써 설계 변경으로 인한 빈번한 수정 작업에 신속히 대응할 있도록 하였고, 축적된 설계 경험를 반영하여 반복되는 작업 피로를 최소화할 수 있도록 하였다. 그리고 개발된 시스템을 해양 플랜트 구조 모듈에 적용하여 기존 방법 대비 약 50% 이상의 작업 효율성 향상이 예상됨을 확인하였다.

파라메트릭 기술을 이용한 토공용 임시 구조물의 3D BIM 모델링 (3D BIM Modeling of Temporary Structure for Earthwork using Parametric Technique)

  • 와카스 아샤드 타놀리;하스나인 라자;이승수;박상일;서종원
    • 한국BIM학회 논문집
    • /
    • 제8권2호
    • /
    • pp.1-9
    • /
    • 2018
  • Nowadays Building Information Modeling (BIM) is a significant source of sharing project information in the construction industry. This method of sharing the information enhances the project understanding among stakeholders. Modeling of information using BIM is becoming an essential part of many construction projects around the globe. Despite rapid adoption of BIM in construction industry still, some sectors of the industry like earthwork have not yet reaped its full benefits. BIM has brought a paradigm shift through identification and integration of the roles and responsibilities of project participants on a single platform. BIM is a 3D model-based process which provides the insight into the efficient project planning and design. The 3D modeling can also be used significantly for the design of temporary structures in an earthwork project. This paper presents the quantity take-off methodology and parametric modeling technique for creating the temporary structures using 3D BIM process. A case study is conducted to implement the proposed temporary structure family design on a real site project. The study presented is beneficial for the earthwork project stakeholders to extract the relevant information using 3D BIM models in a project. It provides an opportunity to calculate the quantity of material required for a project accurately.

Parametric Modeling and Shape Optimization of Offshore Structures

  • Birk, Lothar
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.29-40
    • /
    • 2006
  • The paper presents an optimization system which integrates a parametric design tool, 3D diffraction-radiation analysis and hydrodynamic performance assessment based on short and long term wave statistics. Controlled by formal optimization strategies the system is able to design offshore structure hulls with superior seakeeping qualities. The parametric modeling tool enables the designer to specify the geometric characteristics of the design from displacement over principal dimensions down to local shape properties. The computer generates the hull form and passes it on to the hydrodynamic analysis, which computes response amplitude operators (RAOs) for forces and motions. Combining the RAOs with short and long-term wave statistics provides a realistic assessment of the quality of the design. The optimization algorithm changes selected shape parameters in order to minimize forces and motions, thus increasing availability and safety of the system. Constraints ensure that only feasible designs with sufficient stability in operation and survival condition are generated. As an example the optimization study of a semisubmersible is discussed. It illustrates how offshore structures can be optimized for a specific target area of operation.

Surface 및 Solid 방식의 비교를 통한 Parametric 기법의 토공물량산출 방법 (Parametric Quantity Take-Off of Earthwork by Comparing the Use of Surface and Solid Models)

  • 황희석;이재홍;김태영
    • 한국BIM학회 논문집
    • /
    • 제8권1호
    • /
    • pp.56-62
    • /
    • 2018
  • There exists no precedented case of quantity take-off, using parametric modeling, from BIM-based irregular structures. Civil 3D provides earthwork quantity take-off based on surface modeling. Generally, designers should enter data into the specification additionally after extracting quantity estimation from earthwork modeling design. The objective of this report is to suggest the method from quantity take-off to specification of BIM-based earthwork quantities. We intend to investigate earthwork take-off method by Civil3D and explain why parametric information extraction is required for quantity estimation and specification and how information of earthwork quantity based on solid and surface modeling is connected to open quantity take-off module. It is highly expected that this suggestion would be the practical methodology of earthwork quantity take-off and specification in the field of civil engineering.

Parametric Studies for the Optimum Design of a Hexagonal Plate Monopole Antenna

  • Park Seong-Bae;Park Joung-Min;Ahn Bierng-Chearl;Kim Kyung-Seok
    • Journal of electromagnetic engineering and science
    • /
    • 제6권1호
    • /
    • pp.53-61
    • /
    • 2006
  • In this paper, we present parametric studies for the optimum design of a hexagonal plate monopole antenna. The dependence of the antenna performance on various geometric parameters is investigated using a commercial electromagnetic software, from which an optimum design of a hexagonal plate monopole antenna is derived. Guidelines for determining initial parameter values are given. The diameter of the circular ground plane is minimized tlo 1/5 wavelength at the lowest operating frequency. The antenna impedance matching is controlled by adjusting the gap between the plate and the ground plane, the plate base width, and the base bevel angle. The antenna proposed in. this paper shows a reflection coefficient less than -10 dB and a $2.0{\sim}6.2$ dBi gain over $3{\sim}20$ GHz frequencies.

Generic Modeling System 개발 및 응용사례 (Generic Modeling System)

  • 조유정;임기수;나재일;이장열
    • 한국CDE학회지
    • /
    • 제3권3호
    • /
    • pp.36-45
    • /
    • 1997
  • This paper presents the research on the development of Generic modeling system as a 3D CAD customizing system for the elevator design. This system enables to create a generic model which gives birth to many models. The generic model is expressed as a non-scale model or a standard model in this paper. Using the parametric design techniques, all their relationships are explicitly represented in the tables, not represented in implicit embedded coding. Owing to this method, designers can easily extend the generic model to contain more model families. All parametric relations are stored in relational database. A designer can retrieve various models from a generic model automatically, by using some key input values.

  • PDF

3DP 폴리머-패브릭(3D Print Polymer-Fabric Structure)을 적용한 패션디자인 연구 (A Study of Fashion Design Applying a 3D Print Polymer-Fabric Structure)

  • 임소영;전재훈
    • 한국의류산업학회지
    • /
    • 제25권2호
    • /
    • pp.139-152
    • /
    • 2023
  • Despite efforts to apply 3D print (3DP) technology in the field of fashion and endless discussions about the possibility of future development, in reality, it is difficult to utilize 3DP technology in fashion for reasons related to material, technology, and cost constraints. The purpose of this study was to supplement the limitations of 3DP technology in order to promote its utilization in fashion and simultaneously find a solution to achieve aesthetic satisfaction in the design method. Specifically, through the development of fashion products with a 3DP polymer-fabric structure to which the parametric design methodology has been applied, this study explored the possibility of practical application and proposes a new 3DP fashion design method. The 3DP polymer-fabric developed as a result of the research was stably adhered to the fabric. Additionally, the study confirmed the possibility of making 3DP clothes that are amenable to the wearer's activities, as it was verified that cutting and sewing tailored to the human body's curvature and structure can be performed. The design process using the 3DP polymer-fabric presented in this study is meaningful in that it suggests a solution to complement the limitations of modern technology in connection with designers' creativity. Moreover, the design process presented in this study is expected to contribute to the commercialization and generalization of 3DP by providing practical help to allow fashion experts to utilize 3DP technology.