• Title/Summary/Keyword: 3D numerical model

Search Result 1,545, Processing Time 0.041 seconds

A Numerical Study on the Heat Transfer Characteristics of a Metal Hydride Reactor with Embedded Heat Pipes (내부에 히트파이프를 삽입한 메탈 하이드라이드 반응기의 열전달 특성에 대한 수치해석 연구)

  • Park, Young-Hark;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2346-2351
    • /
    • 2008
  • This study deals with heat pipes inserted into the metal hydride(MH) reactor to increase the effective thermal conductivity of the system and thus to enhance the thermal control characteristics. A numerical analysis was conducted to predict the effect of inserted heat pipes on the heat transfer characteristics of MH, which inherently has extremely low thermal conductivity. The numerical model was a cylindrical container of O.D. 76.3 mm and length 1 m, which is partially filled with about 60% of MH material. The heat pipe was made of copper-water combination, which is suitable for operation temperature range between $10^{\circ}C$ and $80^{\circ}C$. Both inner -and outer- heat pipes were considered in the model. Less than two hours of transient time is of concern when decreasing or increasing the temperature for absorption and discharge of hydrogen gas. FLUENT, a commercial software, was employed to predict the transient as well as steady-state temperature distribution of the MH reactor system. The numerical results were compared and analyzed from the view point of temperature uniformity and transient time up to the specified maximum or minimum temperatures.

  • PDF

Parametric Study on Straightness of Steel Wire in Roller Leveling Process Using Numerical Analysis (수치해석을 이용한 선재 롤러교정공정 주요인자의 직진도 영향 분석)

  • Bang, J.H.;Song, J.H.;Lee, M.G.;Lee, H.J.;Sung, D.Y.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.296-301
    • /
    • 2022
  • In this study, influence of the process parameters of the roller leveling process on the straightness of the steel wire was analyzed using numerical analysis. To construct the numerical analysis model, cross-sectional and longitudinal element sizes, which affect the prediction accuracy of longitudinal stress caused by bending deformation of the steel wire, were optimized, and mass scaling that satisfies prediction accuracy while reducing computational time was confirmed. By using the constructed numerical analysis model, the influence of various process parameters such as input direction of the steel wire, initial diameter of the steel wire, back tension and intermesh on the straightness was confirmed. The simulation result shows that the 3rd and 4th roller of vertical straightener had a significant influence on vertical shape of the steel wire.

A Study on the Evaluation for the Application of a Comn CFD Code to Flow Analysis of a HAWTs (수평축 풍력발전용 터빈의 유동 해석을 위한 상용 CFD 코드의 적용성 평가에 관한 연구)

  • Kim, B. S.;Kim, J. H.;Nam, C. D.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.396-401
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow characteristics of wind turbine. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing disproportionally with the size of the wind turbines, and is hence mostly limited to observing the phenomena. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Wavier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations presented in this paper. The 3-D flow separation and the wake distribution of 2 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and visualized result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good agree with visualized results.

  • PDF

Assessment of computational performance for a vector parallel implementation: 3D probabilistic model discrete cracking in concrete

  • Paz, Carmen N.M.;Alves, Jose L.D.;Ebecken, Nelson F.F.
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.345-366
    • /
    • 2005
  • This work presents an assessment of the computational performance of a vector-parallel implementation of probabilistic model for concrete cracking in 3D. This paper shows the continuing efforts towards code optimization as reported in earlier works Paz, et al. (2002a,b and 2003). The probabilistic crack approach is based on the direct Monte Carlo method. Cracking is accounted by means of 3D interface elements. This approach considers that all nonlinearities are restricted to interface elements modeling cracks. The heterogeneity governs the overall cracking behavior and related size effects on concrete fracture. Computational kernels in the implementation are the inexact Newton iterative driver to solve the non-linear problem and a preconditioned conjugate gradient (PCG) driver to solve linearized equations, using an element by element (EBE) strategy to compute matrix-vector products. In particular the paper analyzes code behavior using OpenMP directives in parallel vector processors (PVP), such as the CRAY SV1 and CRAY T94. The impact of the memory architecture on code performance, and also some strategies devised to circumvent this issue are addressed by numerical experiment.

Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구)

  • Park, Sang Hoon;Roh, Jang Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.132-145
    • /
    • 2017
  • Shock loss was not applied for the tunnel ventilation of road tunnel in the past. However, pressure losses due to the shock loss can be significant in network double-deck road tunnel in which combining and separating road structures exist. For the optimum ventilation design of network double-deck road tunnel, this study conducted 3D CFD numerical analysis for the shock loss at the combining and separating flows. The CFD model was made with the real-scale model that was the standard section of double-deck road tunnel. The shock loss coefficient of various combining and separating angles and road width was obtained and compared to the existing design values. As a result of the comparison, the shock loss coefficient of the $30^{\circ}$ separating flow model was higher and that of the two-lane combining flow model was lower. Since the combining and separating angles and road width can be important for the design of shock loss estimation, it is considered that this study can provide the accurate design factors for the calculation of ventilation system capacity. In addition, this study conducted 3D CFD analysis in order to calculate the shock loss coefficient of both combining and separating flows at flared intersection, and the result was compared with the design values of ASHRAE. The model that was not widened at the intersection showed three times higher at the most, and the other model that was widened at the intersection resulted two times higher shock loss coefficients.

NUMERICAL STUDY ON THE CHARACTERISTICS OF NON-NEWTONIAN FLUID FLOW OVER OBSTACLE (장애물 주위의 비뉴턴 유체의 유동특성에 관한 수치적 연구)

  • Kim, Hyung Min
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.61-67
    • /
    • 2014
  • Since the most of the existing non-Newtonian models are not adequate to apply to the lattmce Boltzmann method, it is a challenging task from both the theoretical and the numerical points of view. In this research the hydro-kinetic model was modified and applied to the 3-D moving sphere in the circular channel flow and the characteristics of the shear thinning effect by the HK-model was evaluated and the condition of ${\Gamma}$ in the model was suggested for the stable simulation to generate non-trivial prediction in three dimension strong shear flows. On the wall boundaries of circular channel the curved wall surface treatment with constant velocity condition was applied and the bounceback condition was applied on the sphere wall to simulate the relative motion of the sphere. The condition is adequate at the less blockage than 0.7 but It may need to apply a multi-scale concept of grid refinement at the narrow flow region. to obtain the stable numerical results.

Numerical Analysis on Cutting Power of Disc Cutter with Joint Distribution Patterns (절리분포 양상에 따른 디스크커터의 절삭력에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2011
  • The LCM test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. Moreover it is not easy to execute the test for jointed rock mass, and sometimes the design model estimated from the test can not be applied to the real design of disc cutter. In order to break this critical point, lots of numerical studies have been performed. PFC2D can simulate crack propagation and rock fragmentation effectively, because it is useful in particle flow analysis. Consequently, in this study, the PFC2D has been adopted for numerical analysis on cutting power of disc cutter according to the different angle of joint, the different direction of joint, and the different space of joint with jointed rock mass models. From the numerical analyses, it was concluded that the bigger cutting power of disc cutter was needed for reverse cutting direction to joint rather than for forward direction, and the cutting power of disc cutter was increased with decreasing the dip angle of joint and decreasing the space of joints in reverse cutting direction. The more precise numerical model for disc cutter can be developed from comparison between the numerical results and LCM test results, and the resonable guideline is expected for prediction of TBM performance and disc cutter.

Application of CFD-VOF Model to Autonomous Microfluidic Capillary System (마이크로 모세관 유동 해석을 위한 CFD-VOF 모텔 응용)

  • Jeong J.H.;Im Y.H.;Han S.P.;Suk J.W.;Kim Y.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.224-229
    • /
    • 2004
  • The objective of this work is not only to perform feasibility studies on the CFD (computational fluid dynamics) analysis for the capillary system design but also to provide an enhanced understanding of the autonomous capillary flow. The capillary flow is evaluated by means of the commercial CFD software of FLUENT, which includes the VOF (volume-of-fluid) model for multiphase flow analysis. The effect of wall adhesion at fluid interfaces in contact with rigid boundaries is considered in terms of static contact angle. Feasibility studies are first performed, including mesh-resolution influence on pressure profile, which has a sudden increase at the liquid/gas interface. Then we perform both 2D and 3D simulations and examine the transient nature of the capillary flow. Analytical solutions are also derived for simple cases and compared with numerical results. Through this work, essential information on the capillary system design is brought out. Our efforts and initial success in numerical description of the microfluidic capillary flows enhance the fundamental understanding of the autonomous capillary flow and will eventually pave the road for full-scale, computer-aided design of microfluidic networks.

  • PDF

Analysis of Filling in Injection Molding with Compressibility (압축성을 고려한 사출성형 충전과정에 관한 연구)

  • Han, Kyeong-Hee;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.735-745
    • /
    • 1997
  • In this study, the compressibility of resin was considered in filling analysis to account for the possible packing type flow. A numerical simulation program employing a hybrid finite element/finite difference scheme was developed to solve Hele-Shaw flow of the compressible viscous fluid at non-isothermal conditions. To advance the melt front, a control volume approach was adopted. Thin complex 3-D shapes of cavities, runners, and sprues were discretized by employing triangular, cylindrical and/or rectangular strip elements. Mass conservation was applied to each control volume to solve for the pressure distribution. Directly applying a constant mass flow rate at the inlet removes calculation of the apparent pressure boundary conditions, resulting in better simulation condition. The Cross model was used to model viscosity and the Tait equation was employed to represent density as a function of temperature and pressure. The validity of the developed program was verified through comparisons with available data in the literature and the effect of compressibility on the pressure distribution was discussed. To reduce computation time, 1-D and 2-D elements were used instead of applying triangular elements and the numerical results were compared to each other.

Numerical Analysis on the Pressure Characteristics in a Snubber for Hydrogen Compressor (수소압축기용 스너버 내부 압력특성에 관한 수치해석)

  • Shim, K.J.;Yi, C.S.;Akbar, W.A;Chung, H.S.;Jeong, H.M.;Lee, C.J.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2007
  • The objective of this study is to find the optimum design of a snubber using CFD analysis. Several dimensions such as snubber height(H), snubber diameter(D), buffer width and buffer angle are considered in this study. The present study shows that the CFD can be applied to study the pressure characteristics inside the snubber. The objective of the snubber design optimization are to minimize a pressure loss and the pulsation ratio. Numerical results such as particle track, pressure distribution and turbulent kinetic energy are used to analyze the critical area and pressure behavior inside the snubber. As a result, snubber model with H/D ratio of 3.23 and buffer angle of $40^{\circ}$ has a minimum pressure loss. On the other hand, snubber model with H/D ratio 4.41 and buffer angle $10^{\circ}$ has a minimum pulsation ratio.

  • PDF