• Title/Summary/Keyword: 3D imaging system

Search Result 498, Processing Time 0.025 seconds

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Characterization of the a-Se Film for Phosphor based X-ray light Modulator (형광체 기반 X선 광 변조기를 위한 비정질 셀레늄 필름 특성)

  • Kang, Sang-Sik;Park, Ji-Koon;Cho, Sung-Ho;Cha, Byung-Youl;Shin, Jung-Wook;Lee, Kun-Hwan;Mun, Chi-Woong;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.306-309
    • /
    • 2007
  • PXLM(Phosphor based x-ray light modulator) has a combined structure by phosphor, photoconductor, and liquid crystal and it can realize x-ray image of high resolution in clinical diagnosis area. In this study, we fabricated a photoconductor and investigated electrical and optical properties to confirm application possibility of radiator detector of PXLM structure. As photoconductor, amorphous selenium(a-Se), which is used most in DR(Digital radiography) of direct conversion method, was used and for formation of thin film, it was formed as $20{\mu}m-thick$ by using thermal vacuum evaporation system. For a produced a-Se film, through XRD(X-ray diffraction) and SEM(Scanning electron microscope), we investigated that amorphous structure was uniformly established and through optical measurement, for visible light of 40 $0\sim630nm$, it had absorption efficiency of 95 % and more. After fabricated a-Se film on the top of ITP substrate, hybrid structure was manufactured through forming $Gd_2O_3:Eu$ phosphor of $270{\mu}m-thick$ on the bottom of the substrate. As the result to confirm electrical property of the manufactured hybrid structure, in the case of appling $10V/{\mu}m$, leakage current of $2.5nA/cm^2$ and x-ray sensitivity of $7.31nC/cm^2/mR$ were investigated. Finally, we manufactured PXLM structure combined with hybrid structure and liquid crystal cell of TN(Twisted nematic) mode and then, investigated T-V(Transmission vs. voltage) curve of external light source for induced x-ray energy. PXLM structure showed a similar optical response with T-V curve that common TN mode liquid crystal cell showed according to electric field increase and in appling $50\sim100V$, it showed linear transmission efficiency of $12\sim18%$. This result suggested an application possibility of PXLM structure as radiation detector.

The useage of the EPID as a QA tools (EPID의 적정관리 도구로서의 유용성에 관한 연구)

  • Cho Jung Hee;Bang Dong Wan;Yoon Seong Ik;Park Jae Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • Purpose : The aim of this study is to conform the possibility of the liquid type EPID as a QC tools to clinical indication and of replacement of the film dosimetry. Aditional aim is to describe a procedure for the use of a EPID as a physics calibration tool in the measurements of radiation beam parameters which are typically carried out with film. Method & Materials : In this study we used the Clinac 2100c/d with EPID. This system contains 65536 liquid-filled ion chambers arranged in a $256{\times}256$ matrix and the imaging area is $32.5{\times}32.5cm$ with liquid layer thickness of 1mm. The EPID was tested for different field sizes under typical clinical conditions and pixel values were calibrated against dose by producing images using various thickness of lead attenuators(lead step wedge) using 6 & 10MV x-ray. We placed various thickness of lead on the table of linear accelerator and set the portal vision an SDD of 100cm. To acquire portal image we change the field size and energy, and we recorded the average pixel value in a $3{\times}3$ pixel region of interest(ROI) at field center was recorded. The pixel values were also measured for different field sizes in order to evaluate the dependence of pixel value on x-ray energy spectrum and various scatter components. Result : The EPID, as a whole, was useful as a QA tool and dosimetry device. In mechanical check, cross-hair centering was well matched and the error was less than ?2mm and light/radiation field coincidence was less than 1mm also. In portal dosimetry the wider the field size the the higher the pixel value and as the lead thickness increase, the pixel value was exponentially decreased. Conclusions : The EPID was very suitable for QA tools and it can be used to measure exit dose during patients treatment with reasonable accuracy. But when indicate the EPID to clincal study deep consideration required

  • PDF

GPS-based monitoring and modeling of the ionosphere and its applications for high accuracy correction in China

  • Yunbin, Yuan;Jikun, Ou;Xingliang, Huo;Debao, Wen;Genyou, Liu;Yanji, Chai;Renggui, Yang;Xiaowen, Luo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.203-208
    • /
    • 2006
  • The main research conducted previously on GPS ionosphere in China is first introduced. Besides, the current investigations include as follows: (1) GPS-based spatial environmental, especially the ionosphere, monitoring, modeling and analysis, including ground/space-based GPS ionosphere electron density (IED) through occultation/tomography technologies with GPS data from global/regional network, development of a GNSS-based platform for imaging ionosphere and atmosphere (GPFIIA), and preliminary test results through performing the first 3D imaging for the IED over China, (2) The atmospheric and ionospheric modeling for GPS-based surveying, navigation and orbit determination, involving high precisely ionospheric TEC modeling for phase-based long/median range network RTK system for achieving CM-level real time positioning, next generation GNSS broadcast ionospheric time-delay algorithm required for higher correction accuracy, and orbit determination for Low-Earth-orbiter satellites using single frequency GPS receivers, and (3) Research products in applications for national significant projects: GPS-based ionospheric effects modeling for precise positioning and orbit determination applied to China's manned space-engineering, including spatial robot navigation and control and international space station intersection and docking required for related national significant projects.

  • PDF

MR Technology to 4T

  • Vaughan, Thomas
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.103-105
    • /
    • 2003
  • After fifteen years of development, Magnetic Resonance (MR) technology for human imaging and spectroscopy is reaching a refined state with FDA approved 3T clinical products from Siemens, GE, and Philips. Broker has cleared CE approval with a 4T system. Varian supports a 4T system platform as well. Shielded magnets are standard at 3T from GE, Oxford, Magnex, and IGC. A shielded 4T whole body magnet is available from Oxford. Stronger switched gradients and dynamic shim coils, desired at any field, areespecially useful at higher static magnetic fields B0. In addition to the higher currents required for higher resolution slice or volume selection afforded by higher SNR, whole body gradient coils will be driven at increasing slew rates to meet the needs of new cardiac applications and other requirements. For example 3T and 4T systems are now being equipped with 2kV, 500A gradient coils and amplifiers capable of generating 4G/cm in 200msec, over a 67+/-cm bore diameter. High field EPI applications require oscillation rates at 1 kHz and higher. To achieve a benchmark 0.2 ppm shim over a 30cm sphere in a high field magnet, at least four stages of shimming need to be considered. 1) A good high field magnet will be built to a homogeneity spec. falling in the range of 100 to 150 ppm over this 30cm spherical "sweet spot" 2) Most modern high field magnets will also have superconducting shim coils capable of finding 1.5 ppm by their adjustment during system installation. 3) Passive ferro-magnetic shimming combined with 4) active, high order room temperature shim coils (as many as five orders are now being recommended) will accomplish 0.2 ppm over the 30cm sphere, and 0.1 ppm over a human brain in even the highest field magnets for human studies. Safety concerns for strong, fast gradients at any B0 field include acoustic noise and peripheral nerve stimulation. One or more of the mechanical decoupling methods may lead to quieter gradients. Patient positioning relative to asymmetric or short gradient coils may limit peripheral nerve stimulation at higher slew rates. Gradient designs combining a short coil for local speed and strength with a longer coil for coverage are being developed for 3T systems. Local gradients give another approach to maximizing performance over a limited region while keeping within the physiologically imposed dB0/dt performance limits.

  • PDF

Launch environmental test results of KAISTSAT-4 QM (과학위성 1호 인증모델에 대한 발사환경시험 결과)

  • Tahk, Kyung-Mo;Lee, Jun-Ho;Lee, Sang-Hyun;Kim, Eugene-D.;Cha, Won-Ho;Youn, Sung-Kie
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.124-129
    • /
    • 2002
  • KAISTAT-4 is the fourth experimental microsatellite of KITSAT series which has been developed by Satellite Technology Research Center of KAIST for the last two years. The launch of KAISTSAT-4 is scheduled in 2003. The primary experimental payloads consist of Far-ultraviolet Imaging Spectrograph and Space Physis Package. In a similar way to KITSAT series, the interior of KAISTSAT-4 comprises mainly a set of stacked aluminium-alloy module boxes, each being capable of acting as the primary load path in the mechanical structure. The KAISTSAT-4 qualification model is now designed, fabricated, integrated, and tested to verify if the electrical and mechanical components work and can withstand the launch environments. All the required structural tests have been performed to a sufficient degree to satisfy the intent of the test requirements. This paper presents the structural system and launch environmental test results of KAISTSAT-4 qualification model.

3-Dimensional Dosimetry of Small Field Photon Beam (광자선의 소조사면에서의 3차원적 선량 측정)

  • Jang, Ji-Sun;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • A polymer gel dosimeter was fabricated. A 3-dimensional dosimetry experiment was performed in the small field of the photon of the cyberknife. The dosimeter was installed in a head and neck phantom. It was manufactured from the acrylic and it was used in dosimetry. By using the head and neck CT protocol of the CyberKnife system, CT images of the head and neck phantom were obtained and delivered to the treatment planning system. The irradiation to the dosimeter in the treatment planning was performed, and then, the image was obtained by using 3.0T magnetic resonance imaging (MRI) after 24 hours. The dose distribution of the phantom was analyzed by using MATLAB. The results of this measurement were compared to the results of calculation in the treatment planning. In the isodose curve on the axial direction, the dose distribution coincided with the high dose area, 0.76mm difference on 80%, rather than the low dose area, 1.29 mm difference on 40%. In this research, the fact that the polymer gel dosimeter and MRI can be applied for analyzing a small field in a 3 dimensional dosimetry was confirmed. Moreover, the feasibility of using these for the therapeutic radiation quality control was also confirmed.

Multiple Reference Network Data Processing Algorithms for High Precision of Long-Baseline Kinematic Positioning by GPS/INS Integration (GPS/INS 통합에 의한 고정밀 장기선 동적 측위를 위한 다중 기준국 네트워크 데이터 처리 알고리즘)

  • Lee, Hung-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.135-143
    • /
    • 2009
  • Integrating the Global Positioning System (GPS) and Inertial Navigation System (INS) sensor technologies using the precise GPS Carrier phase measurements is a methodology that has been widely applied in those application fields requiring accurate and reliable positioning and attitude determination; ranging from 'kinematic geodesy', to mobile mapping and imaging, to precise navigation. However, such integrated system may not fulfil the demanding performance requirements when the baseline length between reference and mobil user GPS receiver is grater than a few tens of kilometers. This is because their positioning/attitude determination is still very dependent on the errors of the GPS observations, so-called "baseline dependent errors". This limitation can be remedied by the integration of GPS and INS sensors, using multiple reference stations. Hence, in order to derive the GPS distance dependent errors, this research proposes measurement processing algorithms for multiple reference stations, such as a reference station ambiguity resolution procedure using linear combination techniques, a error estimation based on Kalman filter and a error interpolation. In addition, all the algorithms are evaluated by processing real observations and results are summarized in this paper.

Development of $^1H-^{31}P$ Animal RF Coil for pH Measurement Using a Clinical MR Scanner (임상용 MR에서 pH 측정을 위한 동물 실험용 $^1H-^{31}P$ RF 코일 개발)

  • Kim, Eun Ju;Kim, Daehong;Lee, Sangwoo;Heo, Dan;Lee, Young Han;Suh, Jin-Suck
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Purpose : To establish a pH measurement system for a mouse tumor study using a clinical scanner, to develop the $^1H$ and 31P radio frequency (RF) coil system and to test pH accuracy with phantoms. Materials and Methods: The $^1H$ and the $^{31}P$ surface coils were designed to acquire signals from mouse tumors. Two coils were positioned orthogonally for geometric decoupling. The pH values of various pH phantoms were calculated using the $^1H$ decoupled $^{31}P$ MR spectrum with the Henderson-Hasselbalch equation. The calculated pH value was compared to that of a pH meter. Results: The mutual coil coupling was shown in a standard $S_{12}$. Coil coupling ($S_{12}$) were -73.0 and -62.3 dB respectively. The signal-to-noise ratio (SNR) obtained from the homogeneous phantom $^1H$ image was greater than 300. The high resolution in vivo mice images were acquired using a $^{31}P$-decoupled $^1H$ coil. The pH values calculated from the $^1H$-decoupled $^{31}P$ spectrum correlated well with the values measured by pH meter ($R^2$=0.97). Conclusion: Accurate pH values can be acquired using a $^1H$-decoupled $^{31}P$ RF coil with a clinical scanner. This two-surface coil system could be applied to other nuclear MRS or MRI.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.