• Title/Summary/Keyword: 3D image reconstruction

Search Result 590, Processing Time 0.027 seconds

Three-dimensional Reconstruction of X-ray Imagery Using Photogrammetric Technique (사진측량기법을 이용한 엑스선영상의 3차원 모형화)

  • Kim, Eui Myoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.277-285
    • /
    • 2008
  • X-ray images are wildly used in medical applications, and these can be more efficiently find scoliosis which is appearing during the growth of human skeleton than others. This research is focused on the calibration of X-ray image and three-dimensional coordinate determination of objects. Three-dimensional coordinate of objects taken by X-ray are determined by two step procedure. Firstly, interior and exterior orientation parameters are determined by camera calibration using Primary Calibration Object (PCO) which has two sides with embedded radiopaque steel ball. Secondly, calibration cage coordinates which is composed of two acrylic sheets that are perpendicular to X-ray source are determined by the parameters. Three-dimensional coordinates of calibration cage determined by photogrammetric technique are compared with that of Coordinate Measuring Machine (CMM). Though the accuracy analysis, X direction which is parallel to X-ray source error values are relatively higher than those of Y and Z directions. But, the accuracies of Y and Z axis are approximately -3 mm to 3 mm. From the research results, it is considered that photogrammetric technique is applied to determine three-dimensional coordinates of patients or assist to make medical devices.

Motion Capture using both Human Structural Characteristic and Inverse Kinematics (인체의 구조적 특성과 역운동학을 이용한 모션 캡처)

  • Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.20-32
    • /
    • 2010
  • Previous hardware devices to capture human motion have many limitations; expensive equipment, complexity of manipulation or constraints of human motion. In order to overcome these problems, real-time motion capture algorithms based on computer vision have been actively proposed. This paper presents an efficient analysis method of multiple view images for real-time motion capture. First, we detect the skin color regions of human being, and then correct the image coordinates of the regions by using camera calibration and epipolar geometry. Finally, we track the human body part and capture human motion using kalman filter. Experimental results show that the proposed algorithm can estimate a precise position of the human body.

Fast Generation and Reconstruction of Digital Holograms Using a Novel Look-up Table (새로운 룩업테이블을 이용한 3차원 디지털 홀로그램의 고속 합성 및 복원)

  • Kim, Seung-Chul;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3C
    • /
    • pp.255-261
    • /
    • 2008
  • Conventional look-up table(LT) has gained a lot of speed increase in generation of digital holograms for 3D objects, but it has required an enormous memory size of the LT. In this paper, a novel approach to dramatically reduce the size of the conventional LT, still keeping its advantage of fast computational speed is proposed, which is called here a N-LT(novel look-up table) method. In the proposed method, only the fringe patterns of the center points on each image plane are pre-calculated, called elemental fringe patterns and stored in the look-up table. Then, the fringe patterns for other object points on each image plane can be obtained by simply shifting this pre-calculated elemental fringe pattern according to the displaced values from the center to those points and adding them together. Some experimental results revealed that the computational speed and the required memory size of the proposed approach are found to be 48.7 times faster than that of the ray-tracing method and 217 times smaller than that of the conventional LT method, respectively.

Accuracy Analysis of Magnetic Resonance Angiography and Computed Tomography Angiography Using a Flow Experimental Model

  • Heo, Yeong-Cheol;Lee, Hae-Kag;Park, Cheol-Soo;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • This study investigated the accuracy of magnetic resonance angiography (MRA) and computed tomography angiography (CTA) in terms of reflecting the actual vascular length. Three-dimensional time of flight (3D TOF) MRA, 3D contrast-enhanced (CE) MRA, volume-rendering after CTA and maximum intensity projection were investigated using a flow model phantom with a diameter of 2.11 mm and area of $0.26cm^2$. 1.5 and 3.0 Tesla devices were used for 3D TOF MRA and 3D CE MRA. CTA was investigated using 16 and 64 channel CT scanners, and the images were transmitted and reconstructed by volume-rendering and maximum intensity projection, followed by conduit length measurement as described above. The smallest 3D TOF MRA measure was $2.51{\pm}0.12mm$ with a flow velocity of 40 cm/s using the 3.0 Tesla apparatus, and $2.57{\pm}0.07mm$ with a velocity of 71.5 cm/s using the 1.5 Tesla apparatus; both images were magnified from the actual measurement of 2.11 mm. The measurement with the 16 channel CT scanner was smaller ($3.83{\pm}0.37mm$) than the reconstructed image on maximum intensity projection. The images from CTA from examination apparatus and reconstruction technique were all larger than the actual measurement.

Simulation Panorama Image Reconstruction for Eliminating Blind Spot of a Running Vehicle (주행 중인 차량의 사각지대 제거를 위한 파노라마 시뮬레이션)

  • Park, Min-Woo;Lee, Seok-Jun;Jang, Kyoung-Ho;Jung, Soon-Ki;Yoon, Pal-Joo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.767-773
    • /
    • 2007
  • 현재 시판되고 있는 대다수의 자동차에 장착된 사이드미러와 백미러 같은 기존의 비젼 시스템은 모두 사각지대(blind spot)를 가지고 있다. 사각지대는 크고 작은 사고의 원인이 되기도 한다. 이러한 단점을 보완하기 위해 자동차 기업들은 자사의 고급 자동차 후방에 광각(wide-angle) 카메라를 장착하고 있다. 광각 카메라 시스템은 1대의 카메라를 사용하여 후방 영상을 얻고 그것을 그대로 보여줌으로서 어느 정도 사각지대를 줄여주는 역할을 하고 있지만 후방의 모든 사각지대를 제거해주지는 못한다. 그러므로 다수의 카메라를 사용하면 보다 넓은 후방 시야를 확보함으로서 보다 완벽하게 사각지대를 제거할 뿐만 아니라, 좀 더 다양한 위험물 정보를 주행 중에도 운전자에게 제공하는 것이 가능해진다. 본 논문에서는 사각지대를 제거하기 위해 차량의 좌, 우측 그리고 후방에 3대의 카메라를 장착하고, 장착된 카메라를 통해 얻어진 영상을 통합한 파노라마 영상을 생성하는 방법과 다양한 환경에서 실험한 결과를 제시한다. 파노라마 영상을 생성하기 위해서 제안하는 방법은 3D 와핑을 통해 각 영상의 Bird's Eye View를 생성하고, 생성된 Bird's Eye View를 2차원 이동변환만을 이용해서 하나의 통합된 Bird's Eye View를 만든다. 이렇게 만들어진 통합된 영상을 후방 카메라를 기준으로 다시 3D 와핑 함으로서 완전한 파노라마 영상을 생성한다. 제시된 방법으로 다양한 상황에 따라 실험을 수행하고, 이를 통해 문제점을 찾아본다.

  • PDF

Automatic Extraction of Building Height Using Aerial Imagery and 2D Digital Map (항공사진과 2차원 수치지형도를 이용한 건물 고도의 자동 추출)

  • Jin, Kyeong-Hyeok;Hong, Jae-Min;Yoo, Hwan-Hee;Yeu, Bock-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.65-69
    • /
    • 2005
  • Efficient 3D generation of cultural features, such as buildings in urban area is becoming increasingly important for a number of GIS applications. For reconstruction or 3D building in urban area aerial images, satellite images, LIDAR data have been used mainly. In case of automatically extracting and reconstructing of building height using single aerial images or single satellite images, there are a lot of problems, such as mismatching that result from a geometric distortion of optical images. Therefore, researches or integrating optical images and existing 2D GIS data(e.g. digital map) has been in progress. In this paper, we focused on extracting of building height by means or interest points and vortical line locus for reducing matching points. Also we used digital plotter in order to validate for the results in this study using aerial images(1/5,000) and existing digital map(1/1,000).

  • PDF

Segmentation of tooth using Adaptive Optimal Thresholding and B-spline Fitting in CT image slices (적응 최적 임계화와 B-spline 적합을 사용한 CT영상열내 치아 분할)

  • Heo, Hoon;Chae, Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.51-61
    • /
    • 2004
  • In the dental field, the 3D tooth model in which each tooth can be manipulated individually is an essential component for the simulation of orthodontic surgery and treatment. To reconstruct such a tooth model from CT slices, we need to define the accurate boundary of each tooth from CT slices. However, the global threshold method, which is commonly used in most existing 3D reconstruction systems, is not effective for the tooth segmentation in the CT image. In tooth CT slices, some teeth touch with other teeth and some are located inside of alveolar bone whose intensity is similar to that of teeth. In this paper, we propose an image segmentation algorithm based on B-spline curve fitting to produce smooth tooth regions from such CT slices. The proposed algorithm prevents the malfitting problem of the B-spline algorithm by providing accurate initial tooth boundary for the fitting process. This paper proposes an optimal threshold scheme using the intensity and shape information passed by previous slice for the initial boundary generation and an efficient B-spline fitting method based on genetic algorithm. The test result shows that the proposed method detects contour of the individual tooth successfully and can produce a smooth and accurate 3D tooth model for the simulation of orthodontic surgery and treatment.

The Evaluation of Reconstruction Method Using Attenuation Correction Position Shifting in 3D PET/CT (PET/CT 3D 영상에서 감쇠보정 위치 변화 방법을 이용한 영상 재구성법의 평가)

  • Hong, Gun-Chul;Park, Sun-Myung;Jung, Eun-Kyung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.172-176
    • /
    • 2010
  • Purpose: The patients' moves occurred at PET/CT scan will cause the decline of correctness in results by resulting in inconsistency of Attenuation Correction (AC) and effecting on quantitative evaluation. This study has evaluated the utility of reconstruction method using AC position changing method when having inconsistency of AC depending on the position change of emission scan after transmission scan in obtaining PET/CT 3D image. Materials and Methods: We created 1 mL syringe injection space up to ${\pm}2$, 6, 10 cm toward x and y axis based on central point of polystyrene ($20{\times}20110$ cm) into GE Discovery STE16 equipment. After projection of syringe with $^{18}F$-FDG 5 kBq/mL, made an emission by changing the position and obtained the image by using AC depending on the position change. Reconstruction method is an iteration reconstruction method and is applied two times of iteration and 20 of subset, and for every emission data, decay correction depending on time pass is applied. Also, after setting ROI to the position of syringe, compared %Difference (%D) at each position to radioactivity concentrations (kBq/mL) and central point. Results: Radioactivity concentrations of central point of emission scan is 2.30 kBq/mL and is indicated as 1.95, 1.82 and 1.75 kBq/mL, relatively for +x axis, as 2.07, 1.75 and 1.65 kBq/mL for -x axis, as 2.07, 1.87 and 1.90 kBq/mL for +y axis and as 2.17, 1.85 and 1.67 kBq/mL for -y axis. Also, %D is yield as 15, 20, 23% for +x axis, as 9, 23, 28% for -x axis, as 12, 21, 20% for +y axis and as 8, 22, 29% for -y axis. When using AC position changing method, it is indicated as 2.00, 1.95 and 1.80 kBq/mL, relatively for +x axis, as 2.25, 2.15 and 1.90 kBq/mL for -x axis, as 2.07, 1.90 and 1.90 kBq/mL for +y axis, and as 2.10, 2.02, and 1.72 kBq/mL for -y axis. Also, %D is yield as 13, 15, 21% for +x axis, as 2, 6, 17% for -x axis, as 9, 17, 17% for +y axis, and as 8, 12, 25% for -y axis. Conclusion: When in inconsistency of AC, radioactivity concentrations for using AC position changing method increased average of 0.14, 0.03 kBq/mL at x, y axis and %D was improved 6.1, 4.2%. Also, it is indicated that the more far from the central point and the further position from the central point under the features that spatial resolution is lowered, the higher in lowering of radioactivity concentrations. However, since in actual clinic, attenuation degree increases more, it is considered that when in inconsistency, such tolerance will be increased. Therefore, at the lesion of the part where AC is not inconsistent, the tolerance of radioactivity concentrations will be reduced by applying AC position changing method.

  • PDF

Usefulness of MRI 3D Image Reconstruction Techniques for the Diagnosis and Treatment of Femoral Acetabular Impingement Syndrome(Cam type) (대퇴 골두 충돌 증후군(Cam type)의 진단과 치료를 위한 자기공명 3D 영상 재구성 기법의 유용성)

  • Kwak, Yeong-Gon;Kim, Chong-Yeal;Cho, Yeong-Gi
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.11
    • /
    • pp.313-321
    • /
    • 2015
  • To minimize CT examination for Hip FAI diagnosis and operation plan. also, whether the MRI 3D images can replace Hip Clock face image was evaluated when performing Hip FAI MRI by using additional 3D image. This study analyzed Hip MRI and 3D Hip CT images of 31 patients in this hospital. For the purpose of evaluating the images, one orthopedic surgeon and one radiology specialist reconstructed Clock face, at MR and CT modality, by superior 12 o'clock, labrum front 3 o'clock, and the other side 9 o'clock, centering on Hip joint articular transverse ligament 6 o'clock. Afterwards, by the Likert Scale 5 point scale (independent t-test p<0.005), this study evaluated the check-up of A. retinacular vessel, B. head neck junction at 11 o'clock, A. Epiphyseal line, B. Cam lesion at 12 o'clock, and Cam lesion, Posterior Cam lesion at 1,2,3 and 4 o'clock. As for the verification of reliability among observers, this study verified coincidence by Cohen's weighted Kappa verification. As a result of Likert scale for the purpose of qualitative evaluation about the image, 11 o'clock A. retinacular vessel MR average was $3.69{\pm}1.0$ and CT average was $2.8{\pm}0.78$. B. head neck juncton didn't have a difference between two observers (p <0.416). 12 o'clock A. Epiphyseal line MR average was $3.54{\pm}1.00$ and CT average was $4.5{\pm}0.62$(p<0.000). B. Cam lesion didn't have a difference between two observers (p <0.532). 1,2,3,4 Cam lesion and Posterior Cam lesion were not statistically significant (p <0.656, p <0.658). As a result of weighted Kappa verification, 11 o'clock A.retinacular vessel CT K value was 0.663 and the lowest conformity. As a result of coincidence evaluation on respective item, a very high result was drawn, and two observers showed high reliability.

Customized Cranioplasty Implants Using Three-Dimensional Printers and Polymethyl-Methacrylate Casting

  • Kim, Bum-Joon;Hong, Ki-Sun;Park, Kyung-Jae;Park, Dong-Hyuk;Chung, Yong-Gu;Kang, Shin-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.6
    • /
    • pp.541-546
    • /
    • 2012
  • Objective : The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods : A total of 16 patients with large skull defects (>100 $cm^2$) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results : The median operation time was $184.36{\pm}26.07$ minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion : Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.