• 제목/요약/키워드: 3D image reconstruction

검색결과 590건 처리시간 0.032초

얼굴 깊이 추정을 이용한 3차원 얼굴 생성 및 추적 방법 (A 3D Face Reconstruction and Tracking Method using the Estimated Depth Information)

  • 주명호;강행봉
    • 정보처리학회논문지B
    • /
    • 제18B권1호
    • /
    • pp.21-28
    • /
    • 2011
  • 얼굴의 3차원 정보는 얼굴 인식이나 얼굴 합성, Human Computer Interaction (HCI) 등 다양한 분야에서 유용하게 이용될 수 있다. 그러나 일반적으로 3차원 정보는 3D 스캐너와 같은 고가의 장비를 이용하여 획득되기 때문에 얼굴의 3차원 정보를 얻기 위해서는 많은 비용이 요구된다. 본 논문에서는 일반적으로 손쉽게 얻을 수 있는 2차원의 얼굴 영상 시퀀스로부터 효과적으로 3차월 얼굴 형태를 추적하고 재구성하기 위한 3차원 Active Appearance Model (3D-AAM) 방법을 제안한다. 얼굴의 3차원 변화 정보를 추정하기 위해 학습 영상은 정면 얼굴 포즈로 다양한 얼굴 표정 변화를 포함한 영상과 표정 변화를 갖지 않으면서 서로 크게 다른 얼굴 포즈를 갖는 영상으로 구성한다. 입력 영상의 3차원 얼굴 변화를 추정하기 위해 먼저 서로 다른 포즈를 갖는 학습 영상으로부터 얼굴의 각 특징점(Land-mark)의 기하학적 변화를 이용하여 깊이 정보를 추정하고 추정된 특징점의 깊이 정보를 입력 영상의 2차원 얼굴 변화에 추가하여 최종적으로 입력 얼굴의 3차원 변화를 추정한다. 본 논문에서 제안된 방법은 얼굴의 다양한 표정 변화와 함께 3차원의 얼굴 포즈 변화를 포함한 실험 영상을 이용하여 기존의 AAM에 비해 효과적이면서 빠르게 입력 얼굴을 추적(Fitting)할 수 있으며 입력 영상의 정확한 3차원 얼굴 형태를 생성할 수 있음을 보였다.

Micro-computed tomography for assessing the internal and external voids of bulk-fill composite restorations: A technical report

  • Tosco, Vincenzo;Monterubbianesi, Riccardo;Furlani, Michele;Giuliani, Alessandra;Putignano, Angelo;Orsini, Giovanna
    • Imaging Science in Dentistry
    • /
    • 제52권3호
    • /
    • pp.303-308
    • /
    • 2022
  • Purpose: This technical report aims to describe and detail the use of micro-computed tomography for a reliable evaluation of the bulk-fill composite/tooth interface. Materials and Methods: Bulk-fill composite restorations in tooth cavities were scanned using micro-computed tomography to obtain qualitatively and quantitatively valuable information. Two-dimensional information was processed using specific algorithms, and ultimately a 3-dimensional (3D) specimen reconstruction was generated. The 3D rendering allowed the visualization of voids inside bulk-fill composite materials and provided quantitative measurements. The 3D analysis software VG Studio MAX was used to perform image analysis and assess gap formation within the tooth-restoration interface. In particular, to evaluate internal adaptation, the Defect Analysis addon module of VG Studio Max was used. Results: The data, obtained with the processing software, highlighted the presence and the shape of gaps in different colours, representing the volume of porosity within a chromatic scale in which each colour quantitatively represents a well-defined volume. Conclusion: Micro-computed tomography makes it possible to obtain several quantitative parameters, providing fundamental information on defect shape and complexity. However, this technique has the limit of not discriminating materials without radiopacity and with low or no filler content, such as dental adhesives, and hence, they are difficult to visualise through software reconstruction.

Evaluation of the Accuracy of Distance Measurements on 3D Volume-rendered Image of Human Skull Using Multi-detector CT: Effects of Acquisition Section Thickness and Reconstruction Section Thickness

  • Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.457-460
    • /
    • 2002
  • The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images.

  • PDF

UAS 및 지상 LiDAR 융합기반 건축물의 3D 재현 (3D Reconstruction of Structure Fusion-Based on UAS and Terrestrial LiDAR)

  • 한승희;강준오;오성종;이용창
    • 도시과학
    • /
    • 제7권2호
    • /
    • pp.53-60
    • /
    • 2018
  • Digital Twin is a technology that creates a photocopy of real-world objects on a computer and analyzes the past and present operational status by fusing the structure, context, and operation of various physical systems with property information, and predicts the future society's countermeasures. In particular, 3D rendering technology (UAS, LiDAR, GNSS, etc.) is a core technology in digital twin. so, the research and application are actively performed in the industry in recent years. However, UAS (Unmanned Aerial System) and LiDAR (Light Detection And Ranging) have to be solved by compensating blind spot which is not reconstructed according to the object shape. In addition, the terrestrial LiDAR can acquire the point cloud of the object more precisely and quickly at a short distance, but a blind spot is generated at the upper part of the object, thereby imposing restrictions on the forward digital twin modeling. The UAS is capable of modeling a specific range of objects with high accuracy by using high resolution images at low altitudes, and has the advantage of generating a high density point group based on SfM (Structure-from-Motion) image analysis technology. However, It is relatively far from the target LiDAR than the terrestrial LiDAR, and it takes time to analyze the image. In particular, it is necessary to reduce the accuracy of the side part and compensate the blind spot. By re-optimizing it after fusion with UAS and Terrestrial LiDAR, the residual error of each modeling method was compensated and the mutual correction result was obtained. The accuracy of fusion-based 3D model is less than 1cm and it is expected to be useful for digital twin construction.

SPECT 심근영상의 영상분할을 이용한 3차원 재구성 (3D Reconstruction Using Segmentation of Myocardial SPECT Images)

  • 정재은;이상복
    • 한국방사선학회논문지
    • /
    • 제3권2호
    • /
    • pp.5-10
    • /
    • 2009
  • 심근영상의 SPECT(Single Photon Emission Computed tomography)검사는 감마선을 방출하는 방사성의약품을 환자에게 정맥주사한 후 이 의약품이 심장에 고루 퍼지면 관심부위를 촬영하여 질병으로 인한 변화를 컴퓨터를 이용하여 진단하는 검사법이다. 기능적인 정보를 담고 있는 심근관류 영상은 비침습적인 심근질환 검사에 유용한 방법이지만, 물리적 인자들에 의해 잡음과 낮은 해상도는 판도하는데 어려움을 주게 된다. 본 논문은 심근영상을 레벨 셋 알고리즘을 이용하여 영상을 분할하고 분할된 영역을 3차원으로 구현하여 판독에 도움을 주는 방안을 제안하였다. 판독의 어려움을 해결하기 위하여 레벨 셋을 이용하여 관심부위인 좌심실 영역을 분할하였고 분할된 영역을 3차원영상으로 모델링하였다.

  • PDF

3차원 안면자동인식기(3D-AFRA)의 Hardware 정밀도 검사 : 형상복원 오차분석 (An Hardware Error Analysis of 3D Automatic Face Recognition Apparatus(3D-AFRA) : Surface Reconstruction)

  • 석재화;송정훈;김현진;유정희;곽창규;이준희;고병희;김종원;이의주
    • 사상체질의학회지
    • /
    • 제19권2호
    • /
    • pp.30-39
    • /
    • 2007
  • 1. Objectives The Face is an important standard for the classification of Sasang Constitution. We are developing 3D Automatic Face Recognition Apparatus(3D-AFRA) to analyse the facial characteristics. This apparatus show us 3D image and data of man's face and measure facial figure data. So we should examine the figure restoration error of 3D Automatic Fare Recognition Apparatus(3D-AFRA) in hardware Error Analysis. 2. Methods We scanned Face status by using 3D Automatic Face Recognition Apparatus(3D-AFRA). And also we scanned Face status by using laser scanner(vivid 9i). We compared facial shape data be restored by 3D Automatic Face Recognition Apparatus(3D-AFRA) with facial shape data that be restorated by 3D laser scanner. And we analysed the average error and the maximum error of two data. 3. Results and Conclusions In frontal face, the average error was 0.48mm. and the maximum error was 4.60mm. In whole face, the average error of was 0.99mm. And the maximum error was 6.64mm. In conclusion, We assessed that accuracy of 3D Automatic Face Recognition Apparatus(3D-AFRA) is considerably good.

  • PDF

체적 홀로그래픽 메모리를 이용한 다시점 스테레오스코픽 디스플레이 (Multiview Stereoscopic Display based on Volume Holographic Memory)

  • 이승현;손광철;심원섭;양훈기;김은수
    • 한국통신학회논문지
    • /
    • 제25권5A호
    • /
    • pp.688-695
    • /
    • 2000
  • 본 논문에서는 체적 홀로그래픽 메모리 저장 기술을 이용한 다시점 스테레오스코픽 디스플레이 시스템을 제안하였다. 디스플레이 평면에서 다시점 3D 영상을 관찰할 수 있도록 공간 다중화된 평면 기준파와 각 다중화된 명면 물체파를 간섭시킨 후 광굴절 매질에 기록하였다. 재생시 다안식 영상으로 구성된 물체파가 시분할적으로 update 되며 브래그 조건을 만족시켜면, 출력 평면에서 다안식 스테레오 영상을 관찰할 수 있다. 체적 홀로그램을 이용한 다시점 디스플레이시스템의 실험과 이론적인 분석을 하였다.

  • PDF

스테레오 영상을 이용한 Surface Rendering (Surface Rendering using Stereo Images)

  • 이성재;윤성원;조영빈;이명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2818-2820
    • /
    • 2001
  • This paper presents the method of 3D reconstruction of the depth information from the endoscopic stereo scopic images. After camera modeling to find camera parameters, we performed feature-point based stereo matching to find depth information. Acquired some depth information is finally 3D reconstructed using the NURBS(Non Uniform Rational B-Spline) algorithm. The final result image is helpful for the understanding of depth information visually.

  • PDF

고속 라인 스캔 방식을 이용한 CFRP 가공 홀 표면 및 내부 결함 검사 (Measurements of Defects after Machining CFRP Holes Using High Speed Line Scan)

  • 김택겸;경대수;손운철;박선영
    • 한국정밀공학회지
    • /
    • 제33권6호
    • /
    • pp.459-467
    • /
    • 2016
  • Using a line scan camera and a Galvano mirror, we constructed a high-speed line-scanning microscope that can generate 2D images ($8000{\times}8000pixels$) without any moving parts. The line scanner consists of a Galvano mirror and a cylindrical lens, which creates a line focus that sweeps over the sample. The measured resolutions in the x (perpendicular to line focus) and y (parallel to line focus) directions are both $2{\mu}m$, with a 2X scan lens and a 3X relay lens. This optical system is useful for measuring defects, such as spalling, chipping, delamination, etc., on the surface of carbon fiber reinforced plastic (CFRP) holes after machining in conjunction with adjustments in the angle of LED lighting. Defects on the inner wall of holes are measured by line confocal laser scanning. This confocal method will be useful for analyzing defects after CFRP machining and for fast 3D image reconstruction.

골결손부 치유과정에서 cone beam형 전산화단층영상의 정확도 (The accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing)

  • 강호덕;김규태;최용석;황의한
    • Imaging Science in Dentistry
    • /
    • 제37권2호
    • /
    • pp.69-77
    • /
    • 2007
  • Purpose: To evaluate the accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing in rat model. Materials and Methods: Sprague-Dawley strain rats weighing about 350 gms were selected. Then critical size bone defects were done at parietal bone with implantation of collagen sponge. The rats were divided into seven groups of 3 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks. The healing of surgical defect was assessed by multi planar reconstruction (MPR) images and three-dimensional (3-D) images of cone beam computed tomography, compared with soft X-ray radiograph and histopathologic examination. Results: MPR images and 3-D images showed similar reformation of the healing amount at 3 days, 1 week, 2 weeks, and 8 weeks, however, lower reformation at 3 weeks, 4 weeks, and 6 weeks. According to imaging-based methodologies, MPR image revealed similar reformation of the healing amount than 3-D images compare with soft X-ray image. Among the four threshold values for 3-D images, 400-500 HU revealed similar reformation of the healing amount. Histopathologic examination confirmed the newly formed trabeculation correspond with imaging-based methologies. Conclusion: MPR images revealed higher accuracy of the imaging reformation of cone beam computed tomography and cone beam computed tomography is a clinically useful diagnostic tool for the assessment of bone defect healing.

  • PDF