• Title/Summary/Keyword: 3D image analysis

Search Result 1,174, Processing Time 0.029 seconds

Exploratory analysis of 3D stereoscopic video measurement (3D 영상 평가를 위한 탐색적 분석)

  • Chung, Dong Hun;Yang, Ho Cheol
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.4
    • /
    • pp.225-235
    • /
    • 2010
  • People are getting more interested in 3D stereoscopic movie, but due to the sudden concern, there is less research how 3D stereoscopic movie influence on people. The present research aims at developing 3D stereoscopic movie measurement. For this, we tested three variables which are perceived functionality, impression, and presence. Perceived functionality is defined as how people perceive functions of 3D stereoscopic movie for instance depth, and impression is defined as how people integrate various information as a total image. Finally, presence is a psychological state that individual's perception fails to accurately acknowledge the role of the technology in the experience. As a result, perceived functionality consists of four factors, impression consists of eight factors, and presence consists of three factors. As an exploratory research, we cannot guarantee the validity of the measurement, but as a seminal research it is worthwhile to pay attention.

Evaluation of the Applicability of PET/CT Phantom as a 3D Printing Material (PET/CT 팬텀의 3D 프린팅 소재 적용 가능성 평가)

  • Lee, Ju-young;Kim, Ji-Hyeon;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.423-431
    • /
    • 2022
  • The purpose of this study is to present objective information in applying 3D printing technology for PET/CT (Positron Emission Tomography/Computed Tomography) performance evaluation and use it as a basic research that can be applied to various purposes in the future. Phantoms were manufactured with step wedge of ABS(Acrylonitrile Butadiene Styrene) and ACR(Acrylic acid) material. The counts for each ROI(Region of Interest) were analyzed through image acquisition in PET/CT. And the variation rate of counts and CNR(Contrast Noise Ratio) was evaluated. In the counts analysis, the effect of thickness occurred. In addition, in the variation rate analysis, the thickness setting of steps wedge 4 to 5 levels should be considered first. These results minimize quantitative and qualitative changes in the phantom manufactured based on 3D printing, and enable more stable PET/CT performance evaluation. Based on 3D printing in PET/CT, various phantoms are expected to be produced in the future. If the characteristics of each material are considered and applied through the basic research such as this research, the result of the phantom manufactured through 3D printing can be more meaningful and will be used in a wide range.

The elimination of the linear artifacts by the metal restorations in the three dimensional computed tomographic images using the personal computer and software (개인용 컴퓨터와 소프트웨어를 이용한 3차원 전산화단층영상에서의 금속 수복물에 의한 선상 오류의 제거)

  • Park Hyok;Lee Hee-Cheol;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.33 no.3
    • /
    • pp.151-159
    • /
    • 2003
  • Purpose: The purpose of this study is to evaluate the effectiveness and usefulness of newly developed personal computer-based software to eliminate the linear artifacts by the metal restorations. Materials and Methods: A 3D CT image was conventionally reconstructed using ADVANTAGE WINDOWS 2.0 3D Analysis software (GE Medical System, Milwaukee, USA) and eliminated the linear artifacts manually. Next, a 3D CT image was reconstructed using V-works 4.0/sup TM/(Cybermed Inc., Seoul, Korea) and the linear artifacts eliminated manually in the axial images by a skillful operator using a personal computer. A 3D CT image was reconstructed using V-works 4.0/sup TM/(Cybermed Inc., Seoul, Korea) and the linear artifacts were removed using a simplified algorithm program to eliminate the linear artifacts automatically in the axial images using a personal computer, abbreviating the manual editing procedure. Finally, the automatically edited reconstructed 3D images were compared to the manually edited images. Results and Conclusion: We effectively eliminated the linear artifacts automatically by this algorithm, not by the manual editing procedures, in some degree. But programs based on more complicated and accurate algorithms may lead to a nearly flawless elimination of these linear artifacts automatically.

  • PDF

Realization of 3D Image on Metal Plate by Optimizing Machining Conditions of Ultra-Precision End-Milling (초정밀 엔드밀링 가공조건 최적화를 통한 금속상의 3차원 이미지 구현)

  • Lee, Je-Ryung;Moon, Seung Hwan;Je, Tae-Jin;Jeong, Jun-Ho;Kim, Hwi;Jeon, Eun-chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.885-891
    • /
    • 2016
  • 3D images are generally manufactured by complex production processes. We suggested a simple method to make 3D images based on a mechanical machining technology in this study. We designed a tetrahedron consisted of many arcs having the depth of $100{\mu}m$ and the pitch of $500{\mu}m$, and machined them on an aluminum plate using end-milling under several conditions of feed-rate and depth of cut. The area of undeformed chip including depth of cut and feed-rate can predict quality of the machined arcs more precisely than the undeformed chip thickness including only feed rate. Moreover, a diamond tool can improve the quality than a CBN tool when many arcs are machined. Based on the analysis, the designed tetrahedron having many arcs was machined with no burr, and it showed different images when observed from the left and right directions. Therefore, it is verified that a 3D image can be designed and manufactured on a metal plate by end-milling under optimized machining conditions.

Automatic Brain Segmentation for 3D Visualization and Analysis of MR Image Sets (MR영상의 3차원 가시화 및 분석을 위한 뇌영역의 자동 분할)

  • Kim, Tae-Woo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.542-551
    • /
    • 2000
  • In this paper, a novel technique is presented for automatic brain region segmentation in single channel MR image data sets for 3D visualization and analysis. The method detects brain contours in 2D and 3D processing of four steps. The first and the second make a head mask and an initial brain mask by automatic thresholding using a curve fitting technique. The stage 3 reconstructs 3D volume of the initial brain mask by cubic interpolation and generates an intermediate brain mask using morphological operation and labeling of connected components. In the final step, the brain mask is refined by automatic thresholding using curve fitting. This algorithm is useful for fully automatic brain region segmentation of T1-weighted, T2-weighted, PD-weighted, SPGR MRI data sets without considering slice direction and covering a whole volume of a brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 in comparison with manual drawing in similarity index.

  • PDF

Solving the Correspondence Problem by Multiple Stereo Image and Error Analysis of Computed Depth (다중 스테레오영상을 이용한 대응문제의 해결과 거리오차의 해석)

  • 이재웅;이진우;박광일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1431-1438
    • /
    • 1995
  • In this paper, we present a multiple-view stereo matching method in case of moving in the direction of optical axis with stereo camera. Also we analyze the obtainable depth precision to show that multiple-view stereo increases the virtual baseline with single-view stereo. This method decides candidate points for correspondence in each image pair and then search for the correct combinations of correspondences among them using the geometrical consistency they must satisfy. Adantages of this method are capability in increasing the accuracy in matching by using the multiple stereo images and less computation due to local processing. This method computes 3-D depth by averaging the depth obtained in each multiple-view stereo. We show that the resulting depth has more precision than depth obtainable by each independent stereo when the position of image feature is uncertain due to image noise. This paper first defines a multipleview stereo agorithm in case of moving in the direction of optical axis with stereo camera and analyze the obtainable precision of computed depth. Then we represent the effect of removing the incorrect matching candidate and precision enhancement with experimental result.

Images Differences of Design Variations in One-Piece Dress Using a 3D Virtual Clothing System (3차원 가상착의 시스템을 활용한 원피스드레스의 디자인 변화에 따른 이미지 차이)

  • Uh, Mi-Kyung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.14 no.2
    • /
    • pp.101-111
    • /
    • 2012
  • The purpose of this study is to evaluate the differences of visual image on variations in the length and princess line, in a silhouette of a one-piece dress with the application of the 3D Virtual Clothing System known as i-designer. Eight sample were examined: 2 variations of the length and 2 variations of the princess line, 2 variations of the form of a silhouette. The data was obtained from 66 fashion design majors. The data was assessed by a t-test and a multi-way ANOVA and factor analysis. The results were as follows; The visual image according to the design variables, four factors were selected; the attractiveness factor, the activeness factor, the practicality factor, the elegance factor. In these factors, the attractiveness factor is estimated by the most important factor. As a result of analyzing the effect of the interaction in the visual image according to the design variables, the influence of the main effect was found to be great in each factor. In the activeness factor, a significant difference was noted in the two-way interaction between the length and the princess line, the length and the silhouette. In the elegance factor, a significant difference was noted in the two-way interaction between the length and the silhouette. However, the influence on three-way interaction among the length, the princess line, and the silhouette was not significant.

  • PDF

Characteristic Analysis of Axial-gap Motor using Magnetic Charge (Magnetic charge를 이용한 Axial-gap 전동기의 특성해석)

  • Lee, Sang-Ho;Kim, Do-Jin;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.997-998
    • /
    • 2007
  • This paper deals with analytical solution concerning the image method using the magnetic charge instead of 3D FEA(finite element analysis) in the slotless single air-gap motor. The theory of analytical method and the design procedures are introduced. The reliability and validity of proposed analytical solution are verified through the comparison with the results of commercial 3D FE software. In addition, calculation time between proposed analytical solution and 3D FEA is compared. Finally, characteristics, such as Back-EMF and phase resistance, between calculated and experimental results are compared. From the verification with 3D FEA and experimental results, it is proved that presented analytical method provided very effective and precise results.

  • PDF

Comparision of Mandible Changes on Three-Dimensional Computed Tomography image After Mandibular Surgery in Facial Asymmetry Patients (안면 비대칭 환자의 하악골 수술 후 하악골 변화에 대한 3차원 CT 영상 비교)

  • Kim, Mi-Ryoung;Chin, Byung-Rho
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.2
    • /
    • pp.108-116
    • /
    • 2008
  • Background : When surgeons plan mandible ortho surgery for patients with skeletal class III facial asymmetry, they must be consider the exact method of surgery for correction of the facial asymmetry. Three-dimensional (3D) CT imaging is efficient in depicting specific structures in the craniofacial area. It reproduces actual measurements by minimizing errors from patient movement and allows for image magnification. Due to the rapid development of digital image technology and the expansion of treatment range, rapid progress has been made in the study of three-dimensional facial skeleton analysis. The purpose of this study was to conduct 3D CT image comparisons of mandible changes after mandibular surgery in facial asymmetry patients. Materials & methods : This study included 7 patients who underwent 3D CT before and after correction of facial asymmetry in the oral and maxillofacial surgery department of Yeungnam University Hospital between August 2002 and November 2005. Patients included 2 males and 5 females, with ages ranging from 16 years to 30 years (average 21.4 years). Frontal CT images were obtained before and after surgery, and changes in mandible angle and length were measured. Results : When we compared the measurements obtained before and after mandibular surgery in facial asymmetry patients, correction of facial asymmetry was identified on the "after" images. The mean difference between the right and left mandibular angles before mandibular surgery was $7^{\circ}$, whereas after mandibular surgery it was $1.5^{\circ}$. The right and left mandibular length ratios subtracted from 1 was 0.114 before mandibular surgery, while it was 0.036 after mandibular surgery. The differences were analyzed using the nonparametric test and the Wilcoxon signed ranks test (p<0.05). Conclusion: The system that has been developed produces an accurate three-dimensional representation of the skull, upon which individualized surgery of the skull and jaws is easily performed. The system also permits accurate measurement and monitoring of postsurgical changes to the face and jaws through reproducible and noninvasive means.

  • PDF

A Discussion on Image Analysis in 18F-Florbetaben PET/CT (18F-Florbetaben PET/CT 검사에서 영상분석에 대한 고찰)

  • Choi, Yong-Hoon;Bahn, Young-Kag;Lim, Han-Sang;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.1
    • /
    • pp.33-37
    • /
    • 2022
  • Purpose 18F-Florbetaben (FBB) Readings are made by visually comparing the signal strengths of gray matter and white matter. We intend to evaluate the usefulness of image analysis by comparing quantified image analysis with readout. Materials and Methods Based on the reading results, 100 patients were divided into a negative scan and a positive scan, and 300 MBq of FBB was injected, and images were taken 90 minutes later for 20 minutes. The equipment was a Discovery 600 (GE Healthcare, MI, USA). Four regions of interest (lateral temporal lobes, frontal lobes, posterior cingulate & precuneus, and parietal lobes) were established based on the amyloid reading standard provided by the manufacturer. For image analysis, SUVratio (SUVr) was calculated by dividing each SUVmean by the cerebellum, and the average SUVr in the entire area was performed. Statistical analysis analyzed the cutoff derivation through ROC Curve, the difference between groups in Independent sample t-test, and the degree of agreement with the reading result through Kappa test. Results The average SUVr cutoff in the entire area was 1.23. Concordance with the read results using cutoff was 95/100 (95%) for negative and 92/100 (92%) for positive. As a result of the t-test, there was a statistically significant difference between the groups (P < 0.05), and the Kappa statistical result showed a high degree of agreement with 0.867 (P < 0.05). Conclusion The results of image analysis were statistically significant and showed a high degree of agreement with the reading results. In addition, FBB image analysis can be viewed by 3D mapping the area where amyloid is accumulated, location estimation is possible, and quantitative analysis results can be viewed in detail. If quantified FBB image analysis is used as an auxiliary indicator, it is thought to be helpful in reading.