• Title/Summary/Keyword: 3D frame structure

Search Result 191, Processing Time 0.026 seconds

A Study on Substitution of Steel structure for Casting Frame (주조 프레임을 강 구조물로의 대체에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.142-149
    • /
    • 1999
  • A machine frame has been manufactured by casting. However, due to the development of the industrial society, 3-D duties was refused. Especially, the declination of the casting industry makes it difficult to produce the frame. Many companies still manufacture the small casting products. The large casting products are extremely limited and manufactured for their own use. Therefore, it is difficult to keep the term of order. In this study, the characteristics of steel structure which is produced by welding were identified in the view of mechanical strength of steel structure which is produced by welding were identified in the view of mechanical strength to substitute steel structure for casting frame. But welding structure has the residual stress, HAZ and welding deformation. Residual stress and HAZ especially cause crack growth. The proposed steel structure, based on the simulation and experiment(tensile curve and S-N curve), can reduce not only the producting term but also the weight of the frame.

  • PDF

Effective mode shapes of multi-storey frames subjected to moving train loads

  • Demirtas, Salih;Ozturk, Hasan
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.311-323
    • /
    • 2020
  • This paper deals with the effect of the mode shapes on the dynamic response of a multi-storey frame subjected to moving train loads which are modelled as loads of constant intervals with constant velocity using the finite element method. The multi-storey frame is modelled as a number of Bernoulli-Euler beam elements. First, the first few modes of the multi-storey frame are determined. Then, the effects of force span length to beam length ratio and velocity on dynamic magnification factor (DMF) are evaluated via 3D velocity-force span length to beam length ratio-DMF graphics and its 2D projections. By using 3D and 2D graphics, the directions of critical speeds that force the structure under resonance conditions are determined. Last, the mode shapes related to these directions are determined by the time history and frequency response graphs. This study has been limited by the vibration of the frame in the vertical direction.

Development of Gas-mask Spectacles (방독면 안경 개발)

  • Lee, Jeung-Young;Parkm Jeong-Sik;Jang, Woo-Yeong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.9-12
    • /
    • 2008
  • Purpose: Current gas-mask is very uncomfortable structure for spectacles wearer. Improving this problem can aid military men and firemen to protect themselves and rescue other person. Methods: we changed the structure from dual type of outward lens and inward lens into a single type structure. we attached acrylic frame to gas-mask instead of outward lens and protected the gas inflow by shutting the gab of lens and frame using silicon shield, and made the frame "S" style for removing astigmatism and maintaining of vertex distance. Results: It was possible to correct visual acuity and gas shield, and could changed the lens like a common spectacles. The new type of gas-mask spectacles could remove 0.53D~1.78D astigmatism occurred from the slant of eyesight and lens surface, 0.07D~0.66D overcorrection occurred from short vertex distance, and 0.1D~0.3D astigmatism occurred from pantoscopic angle. Conclusion: Because new type of gas-mask spectacles had clear visual field, it was expected to improve fighting power and rescue ability.

  • PDF

Development of Efficient Seismic Analysis Model using 3D Rigid-body for Wall-Frame Structures with an Eccentric Core (삼차원 T형강체를 이용한 편심코어를 가진 전단벽-골조 구조물의 효율적인 지진해석모델 개발)

  • Park, Yong-Koo;Lee, Dong-Guen;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • In a shear wall-frame structural system, the structural response is determined by the interaction between the shear wall in bending mode and the frame in shear mode. In order to effectively consider these characteristics of a shear wall-frame structure, the simplified numerical model using the T-shape rigid body was suggested in the previous study. Based on the previously proposed model, an efficient numerical model for a wall-frame structure with an eccentric core has been proposed in this study. To this end, the previously proposed 2D model is extended to the 3D model and it is enhanced by considering torsion effects. As a result, the enhanced model can be applied to the analysis of a wall-frame structure with an eccentric core as well as a centric core.

Integrability of the Metallic Structures on the Frame Bundle

  • Islam Khan, Mohammad Nazrul
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.791-803
    • /
    • 2021
  • Earlier investigators have made detailed studies of geometric properties such as integrability, partial integrability, and invariants, such as the fundamental 2-form, of some canonical f-structures, such as f3 ± f = 0, on the frame bundle FM. Our aim is to study metallic structures on the frame bundle: polynomial structures of degree 2 satisfying F2 = pF +qI where p, q are positive integers. We introduce a tensor field Fα, α = 1, 2…, n on FM show that it is a metallic structure. Theorems on Nijenhuis tensor and integrability of metallic structure Fα on FM are also proved. Furthermore, the diagonal lifts gD and the fundamental 2-form Ωα of a metallic structure Fα on FM are established. Moreover, the integrability condition for horizontal lift FαH of a metallic structure Fα on FM is determined as an application. Finally, the golden structure that is a particular case of a metallic structure on FM is discussed as an example.

3-D Wavelet Compression with Lifting Scheme for Rendering Concentric Mosaic Image (동심원 모자이크 영상 표현을 위한 Lifting을 이용한 3차원 웨이브렛 압축)

  • Jang Sun-Bong;Jee Inn-Ho
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.164-173
    • /
    • 2006
  • The data structure of the concentric mosaic can be regarded as a video sequence with a slowly panning camera. We take a concentric mosaic with match or alignment of video sequences. Also the concentric mosaic required for huge memory. Thus, compressing is essential in order to use the concentric mosaic. Therefore we need the algorithm that compressed data structure was maintained and the scene was decoded. In this paper, we used 3D lifting transform to compress concentric mosaic. Lifting transform has a merit of wavelet transform and reduces computation quantities and memory. Because each frame has high correlation, the complexity which a scene is detected form 3D transformed bitstream is increased. Thus, in order to have higher performance and decrease the complexity of detecting of a scene we executed 3D lifting and then transformed data set was sequently compressed with each frame unit. Each frame has a flexible bit rate. Also, we proposed the algorithm that compressed data structure was maintained and the scene was decoded by using property of lifting structure.

Process of Using BIM for Small-Scale Construction Projects - Focusing on the Steel-frame Work - (소규모 건축공사의 BIM 정보 활용을 위한 프로세스 제안 - 철골공사 중심으로 -)

  • Kim, Jin-Kwang;Yoo, Moo-Young;Ham, Nam-Hyuk;Kim, Jae-Jun;Choi, Chang-Shik
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The current study focused on the utilization of building information modeling (BIM) data in steel-frame structures, which help to reduce project durations because they employ prefabricated structural members that are assembled on-site. In addition, a business process model was proposed using BIM data collected during the preconstruction, structural steel fabrication, and on-site construction phases of an actual steel-frame project. The ultimate expectation is that BIM data support at each phase, as well as the increased understanding among project participants, will result in an increase in project management productivity. The results from the current study are summarized as follows: To implement a BIM capable of application to steel-frame projects and data utilization, existing theories were studied to develop the construction project steps, both generally into the preconstruction (A1), steel fabrication (A2), and on-site construction phases, (A3) and specifically into 19 BIM-applicable phases. Based on the derived BIM-applicable phases, the model elements of the BIM object were identified, and the shortcomings of existing steel-frame projects were ameliorated, resulting in an improved data flow model. Moreover, for the proposed BIM data flow to progress efficiently, the BIM specialist needs to be well-acquainted with the phase-specific three-dimensional (3D) model output, and the infrastructure to construct an error-free 3D model must be provided. Based on the actual construction example, the BIM data utilized steel-frame projects - via production reports, clash checks, two-dimensional (2D) drawings, four-dimensional (4D) simulations, and 3D scanning - to make cooperation and communication among participants easier.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Optimum design of steel frames against progressive collapse by guided simulated annealing algorithm

  • Bilal Tayfur;Ayse T. Daloglu
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.583-594
    • /
    • 2024
  • In this paper, a Guided Simulated Annealing (GSA) algorithm is presented to optimize 2D and 3D steel frames against Progressive Collapse. Considering the nature of structural optimization problems, a number of restrictions and improvements have been applied to the decision mechanisms of the algorithm without harming the randomness. With these improvements, the algorithm aims to focus relatively on the flawed variables of the analyzed frame. Besides that, it is intended to be more rational by instituting structural constraints on the sections to be selected as variables. In addition to the LRFD restrictions, the alternate path method with nonlinear dynamic procedure is used to assess the risk of progressive collapse, as specified in the US Department of Defense United Facilities Criteria (UFC) Design of Buildings to Resist Progressive Collapse. The entire optimization procedure was carried out on a C# software that supports parallel processing developed by the authors, and the frames were analyzed in SAP2000 using OAPI. Time history analyses of the removal scenarios are distributed to the processor cores in order to reduce computational time. The GSA produced 3% lighter structure weights than the SA (Simulated Annealing) and 4% lighter structure weights than the GA (Genetic Algorithm) for the 2D steel frame. For the 3D model, the GSA obtained 3% lighter results than the SA. Furthermore, it is clear that the UFC and LRFD requirements differ when the acceptance criteria are examined. It has been observed that the moment capacity of the entire frame is critical when designing according to UFC.

A Study on Simplified Analysis and Estimation Method for Evaluation of Structural Safety in Modular Underground Arch Structure (모듈러 지중아치 구조 안전성 검토를 위한 간략 해석 및 평가방법에 관한 연구)

  • Kwon, Tae-Yun;Cho, Kwang-Il;Lee, Wong-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2022
  • A modular underground arch structure using steel and concrete has been proposed as a structure that has a simple construction process and can effectively resist cross-sectional forces generated during construction and use. Structural behavior of modular underground arch was evaluated about span length less than 15m through 3D structural analysis and test. In general, 2D and 3D structural analysis methods may be applied for structural analysis such as underground arch and tunnels. However, if a 2D or 3D structural analysis method is applied to evaluate the structural safety of a modular underground arch structure, it is difficult to model for structural analysis and it may take an excessively long time to interpret. Therefore, it may not be reasonable as a structural analysis method for considering the structural safety and earth pressure in the design process of a modular underground arch structure. In addition, when a modular underground arch structure is configured for span lengths to which the predetermined cross-section is applicable, it may be reasonable to evaluate only the safety of the structure and cross-section according to the cross-section and load conditions. Therefore, in this study, a structural analysis model using frame elements was proposed for efficient structural safety evaluation. In addition, structural analysis results of the 2D structural analysis model and the simplified analysis model using frame elements were compared, and the structural safety of the modular underground arch structure for a span length of 20m was evaluated with a simplified analysis method.