• Title/Summary/Keyword: 3D finite elements

Search Result 389, Processing Time 0.021 seconds

A numerical method for buckling analysis of built-up columns with stay plates

  • Djafour, M.;Megnounif, A.;Kerdal, D.;Belarbi, A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.441-457
    • /
    • 2007
  • A new numerical model based on the spline finite strip method is presented here for the analysis of buckling of built-up columns with and without end stay plates. The channels are modelled with spline finite strips while the connecting elements are represented by a 3D beam finite element, for which the stiffness matrix is modified in order to ensure complete compatibility with the strips. This numerical model has the advantage to give all possible failure modes of built-up columns for different boundary conditions. The end stay plates are also taken into account in this method. To validate the model a comparative study was carried out. First, a general procedure was chosen and adopted. For each numerical analysis, the lowest buckling loads and modes were calculated. The basic or "pure" buckling modes were identified and their critical loads were compared with solutions obtained using analytical methods and/or other numerical methods. The results showed that the proposed numerical model can be used in practice to study the elastic buckling of built-up columns. This model is considered accurate and efficient for the local buckling of short columns and global buckling for slender columns.

Buckling Analysis of Box-typed Structures using Adaptive Shell Finite Elements (적응적 쉘유한요소를 이용한 박스형 구조물의 좌굴해석)

  • Song, Myung-Kwan;Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.265-272
    • /
    • 2007
  • The finite element linear buckling analysis of folded plate structures using adaptive h-refinement methods is presented in this paper. The variable-node flat shell element used in this study possesses the drilling D.O.F. which, in addition to improvement of the element behavior, permits an easy connection to other elements with six degrees of freedom per node. The Box-typed structures can be analyzed using these developed flat shell elements. By introducing the variable-node elements some difficulties associated with connecting the different layer patterns, which are common in the adaptive h-refinement on quadrilateral mesh, can be overcome. To obtain better stress field for the error estimation, the super-convergent patch recovery is used. The convergent buckling modes and the critical loads associated with these modes can be obtained.

Analysis of Laminated Composite Stiffened Plates with arbitrary orientation stiffener (임의방향 보강재를 가지는 복합적층 보강판의 해석)

  • Yhim, Sung-Soon;Chang, Suk-Yoon;Park, Dae-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.147-158
    • /
    • 2004
  • For stiffened plates composed of composite materials, many researchers have used a finite element method which connected isoparametric plate elements and beam elements. However, the finite element method is difficult to reflect local behavior of stiffener because beam elements are transferred stiffness for nodal point of plate elements, especially the application is limited in case of laminated composite structures. In this paper, for analysis of laminated composite stiffened plates, 3D shell elements for stiffener and plate are employed. Reissner-Mindlin's first order shear deformation theory is considered in this study. But when thickness will be thin, isoparamatric plate bending element based on the theory of Reissner-Mindlin is generated by transverse shear locking. To eliminate the shear locking and virtual zero energy mode, the substitute shear strain field is used. A deflection distribution is investigated for simple supported rectangular and skew stiffened laminated composite plates with arbitrary orientation stiffener as not only variation of slenderness and aspect ratio of the plate but also variation of skew angle of skew stiffened plates.

Numerical analysis of spalling of concrete cover at high temperature

  • Ozbolt, Josko;Periskic, Goran;Reinhardt, Hans-Wolf;Eligehausen, Rolf
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.279-293
    • /
    • 2008
  • In the present paper a 3D thermo-hygro-mechanical model for concrete is used to study explosive spalling of concrete cover at high temperature. For a given boundary conditions the distribution of moisture, pore pressure, temperature, stresses and strains are calculated by employing a three-dimensional transient finite element analysis. The used thermo-hygro-mechanical model accounts for the interaction between hygral and thermal properties of concrete. Moreover, these properties are coupled with the mechanical properties of concrete, i.e., it is assumed that the mechanical properties (damage) have an effect on distribution of moisture (pore pressure) and temperature. Stresses in concrete are calculated by employing temperature dependent microplane model. To study explosive spalling of concrete cover, a 3D finite element analysis of a concrete slab, which was locally exposed to high temperature, is performed. It is shown that relatively high pore pressure in concrete can cause explosive spalling. The numerical results indicate that the governing parameter that controls spalling is permeability of concrete. It is also shown that possible buckling of a concrete layer in the spalling zone increases the risk for explosive spalling.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

On soil-structure interaction models to simulate free vibrations and behavior under seismic loads of a RC building supported by a particular shallow foundation

  • Soelarso Soelarso;Jean-Louis Batoz;Eduard Antaluca;Fabien Lamarque
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.461-479
    • /
    • 2023
  • The paper deals with the finite element modelling of the free vibration and structural behavior of a particular four-floor reinforced concrete structure subjected to static equivalent seismic loads and supported by a shallow foundation system called SNSF (Spider Net System Footing). The two FE models are a simple 2D Matlab model and a detailed 3D model based on solid elastic elements using Altairworks (Hypermesh and Optistruct). Both models can simulate the soil structure interaction. We concentrate on the behavior of a representative cell involving two columns on five levels. The influence of the boundary conditions on the external vertical planes of the domain are duly studied. The Matlab model appears relevant for a primary estimation of frequencies and stiffness of the whole structure under vertical and lateral loads.

Damage mechanics approach and modeling nonuniform cracking within finite elements for safety evaluation of concrete dams in 3D space

  • Mirzabozorg, H.;Kianoush, R.;Jalalzadeh, B.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An anisotropic damage mechanics approach is introduced which models the static and dynamic behavior of mass concrete in 3D space. The introduced numerical approach is able to model non-uniform cracking within the cracked element due to cracking in Gaussian points of elements. The validity of the proposed model is considered using available experimental and theoretical results under the static and dynamic loads. No instability and stress locking is observed in the conducted analyses. The Morrow Point dam is analyzed including dam-reservoir interaction effects to consider the nonlinear seismic behavior of the dam. It is found that the resulting crack profiles are in good agreement with those obtained from the smeared crack approach. It is concluded that the proposed model can be used in nonlinear static and dynamic analysis of concrete dams in 3D space and enables engineers to define the damage level of these infrastructures. The performance level of the considered system is used to assess the static and seismic safety using the defined performance based criteria.

A Study on the Simulation of Welding Deformation for accurate Assembling (고정밀도 조립을 위한 용접 변형의 해석에 관한 연구)

  • Sung, Ki-Chan;Jang, Kyung-Bok;Jung, Jin-Woo;Kang, Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.129-134
    • /
    • 2001
  • It is essential to predict the welding deformation at assembly stage, to increase productivity through mechanization and automation effectively. A practical analysis method appled for production engineering was proposed to simulate the deformation of arc welding, with an analytical model using finite element method solving thermal-elastic-plastic behavior. In this research, for accurate assembling, 3-D thermal-elastic-plastic finite element model is used to simulate the out-of-plane deformation caused by arc welding. Efforts have been made to find out the efficient method to improve the reliability and accuracy of the numerical calculation. Each of theories of small and large deformation is applied in solving 3-D thermal-elastic-plastic problem to compare with their efficiency about calculation imes and solution accuracy. When solid elements are used in a bending problem of a plate, phenomenon that the predictive deformation is more than that of actual survey is observed. To prevent this phenomenon, reduced integration method for element is employed instead of full integration that is generally used in 3-D thermal-elastic-plastic analysis.

  • PDF

Signal Transmission Characteristics Improvement of Serial Advanced Technology Attachment Connector (SATA 커넥터의 신호 전달 특성 개선)

  • Yang, Jeong-Kyu;Kim, Moon-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.800-803
    • /
    • 2012
  • 본 논문에서는 SATA(Serial Advanced Technology Attachment) 커넥터의 차동 임피던스를 정합하여 신호 전달 특성을 개선한다. 3차원 FEM(Finite Elements Method) 전자기장 시뮬레이터를 이용하여 SATA 커넥터의 차동 모드 S-파라미터를 추출하고, 신호 전달 특성을 분석한다. SATA 커넥터의 반사 손실 ($S_{dd11}$)은 5 GHz 까지 20 dB 이하의 값을 나타내고, 삽입 손실($S_{dd21}$)은 0.1 dB 이하의 값을 나타낸다. 또한 인덕턴스, 커패시턴스, 상호 인덕턴스, 상호 커패시턴스를 추출하여 차동 임피던스를 계산한다. SATA 커넥터의 차동 임피던스는 107.3 ${\Omega}$으로 부정합이다. 차동 임피던스를 정합하기위해서 커넥터 신호 핀을 dx 방향으로 설계 변경한다. $d_x$ 방향으로 0.04 mm 증가 시켰을 때 차동 임피던스가 99.5 ${\Omega}$으로 최적으로 정합되었다. 또한 반사 손실은 1.5 GHz 에서 11 dB 개선되고, 삽입 손실은 최대 약 0.05 dB 개선되었다.

  • PDF

The Convergence of Accuracy Ratio in Finite Element Method (유한요소법의 정도수렴)

  • Cho, Soon-Bo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.85-90
    • /
    • 2003
  • If we use a third order approximation for the displacement function of beam element in finite element methods, finite element solutions of beams yield nodal displacement values matching to beam theory results to have no connection with the number increasing of elements of beams. It is assumed that, as the member displacement value at beam nodes are correct, the calculation procedure of beam element stiffness matrix have no numerical errors. A the member forces are calculated by the equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$, the member forces at nodes of beams have errors in a moment and a shear magnitudes in the case of smaller number of element. The nodal displacement value of plate subject to the lateral load converge to the exact values according to the increase of the number of the element. So it is assumed that the procedures of plate element stiffness matrix calculations has a error in the fundamental assumptions. The beam methods for the high accuracy ratio solution Is also applied to the plate analysis. The method of reducing a error ratio of member forces and element stiffness matrix in the finite element methods is studied. Results of study were as follows. 1. The matrixes of EI[B] and [K] in the equations of M(x)=EI[B]{q} and M(x) = [K]{q}+{Q} of beams are same. 2. The equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$ for the member forces have a error ratio in a finite element method of uniformly loaded structures, so equilibrium node loads {Q} must be substituted in the equation of member forces as the numerical examples of this paper revealed.

  • PDF