• Title/Summary/Keyword: 3D code

Search Result 1,391, Processing Time 0.032 seconds

THE PERFORMANCE ANALYSIS OF A CWP PUMP FOR A NUCLEAR POWER PLANT (원자력 발전소용 순환수 펌프의 성능해석)

  • Lee, M.S.;Han, B.Y.;Hwang, D.Y.;Yoo, S.S.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.232-238
    • /
    • 2009
  • The objective of this study is to investigate the suitable design for a domestic CWP pump, which is used in cooling-water intakes for the unit 3 and 4 of Yeonggwang nuclear power plant. All the simulations are performed, using CFD method with a commercial code STAR-CCM+ version 3.02. After modeling a present design of the pump, the flow around the rotating blade was calculated by using quasi-static method and sliding mesh method with the almost same condition as an actual state. Based on fundamental simulations with various depth of sea water, the reference pressure for the boundary condition of the present study was decided. To verify the reliability of the calculation results, the suction flow rate of the data was compared with that of the experimental data. As a result of this comparison, it is confirmed that two results are fairly consistent. For the improvement of the suction flow rate, computational analysis was done by changing a flow channel and blade shapes. It is shown that the suction flow rate of the new pump was improved.

  • PDF

A Study on Mechanical Properties of Fillet Weldment in Pipeline Repair Welding Using Sleeve (슬리브덮개를 이용한 배관 보수용접시 필릿용접부의 기계적특성에 관한 연구)

  • 김영표;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.49-58
    • /
    • 1996
  • In Korea Gas Corporation, as one of the pipeline repairing methods, damaged pipelines are sometimes treated with a temporally employment of split sleeve. On conducting the repair process, circumferential fillet and longitudinal groove welding usually must be included. For the case of groove welding, a considerable amount of R&D have been carried out related to property changes, while few study on the property change in fillet welding has been conducted. In this paper, so as to confirm the specification of fillet welding in terms of safety and reliability, properties changed by fillet welding were investigated for two welding processes. Qualifying tests such as reviewing macrostructure and nick-break tests were performed according to API 1104 and ASME section IX. In addition, tensile properties and hardness were evaluated according to KS B0841 and BS 4515. The fillet weld prepared by the qualified procedure showed melting depth of 0.8∼1.3mm and heat affected zone of 2.8∼3.4mm length. No crack and lack of penetration were observed. And the results of hardness and nick-break tests satisfied code requirements. The area crossed by fillet and groove welding line was found to have minimal tensile strength.

  • PDF

Flow and Heat Transfer Analysis of a Reactor Coolant Pump in Transient Conditions (원자로 냉각재 펌프의 과도 상태의 유동 및 열전달 해석 연구)

  • Hur, N.;Kim, S.;Yoo, K.-P.;Kim, S. T.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.24-30
    • /
    • 2000
  • The structural analysis of a reactor coolant pump(RCP) of a nuclear power plant is very important for the safety assessment of the plant. Accurate boundary conditions for the heat transfer coefficient are required for reliable thermal stress analysis of the pump casing, especially in transient operations of the pump since the coolant properties are largely dependent on operational conditions. In the present study, a 3D mixed flow type coolant pump was modeled from the RCP drawings and analyzed in the steady state and number of transient flow conditions by using a commercial code STAR-CD. From the result of the computation, it is seen that the average heat transfer coefficients for the cases considered are found to be the suggested values of the manufacturer, Westinghouse Energy System. The unevenness in local heat transfer coefficients, however, is found to be considerable so that the use of average heat transfer coefficients in all boundaries might not give reliable thermal stress predictions.

  • PDF

Tree-dimensional FE Analysis of Acoustic Emission of Fiber Breakage using Explicit Time Integration Method (외연적 시간적분법을 이용한 복합재료 섬유 파단 시 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • The numerical simulation is performed for the acoustic emission and the wave propagation due to fiber breakage in single fiber composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a fiber breakage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the parallel computing technology.

  • PDF

Vehicle Dynamic Analysis Using Nonlinear Finite Element Analysis Program(LS-DYNA) (비선형 유한요소 해석프로그램(LS-DYNA)을 이용한 차량 동력학해석)

  • Min, Han-Ki;Lee, Hyun;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.36-42
    • /
    • 2002
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, noise/vibration/harshness(NVH), crashworthiness and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the virtual proving ground(VPG) approach for obtaining the dynamic characteristics. VPG approach uses a nonlinear, dynamic, finite element code(LS-DYNA3D) which expands the application boundary outside the classic linear, antic assumptions. VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic results, a single lane change test has been performed. The prediction results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

A Study on the Implementation of DS/SS Power Line Communication System for Burst-Format Data Transmission (버스트형 데이터 전송을 위한 DS/SS 전력선 통신시스템의 실현에 관한 연구)

  • 강병권;이재경;신광영;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1054-1062
    • /
    • 1991
  • In this paper a communication system using direct sequence spread spectrum (DS/SS) technique is constructed to transmit burst format data over power line channel with impulsive noise and narrowband interferences. Fast code synchronization is acquired by digital matched filter and data decision is accomplished by sampling pulses. In order to examine the performance of the power line communication system, but error rate and packet loss rate are measured over the simulation channel with various noise sources. When the packet composed of 1-bit preamble and 63-bit data is transmitted under very high burst impulsive noise, the bit error rate is about 10$^3$-10$^4$ and the packet loss rate is below 0.07.

  • PDF

Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect (변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석)

  • Lee, Jung-Han;Oh, Jae Yong;Park, Sang Hu;Shin, Bo Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.

Evaluation on the Applicability of Refractory Coatings to Metal Mold for Cast Iron (주철금형주조용 도형재의 적용성 평가)

  • Seo, Kum-Hee;Kim, Ki-Young;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.3
    • /
    • pp.144-149
    • /
    • 2012
  • A series of refractory mold coatings were applied to cast iron specimens, and their resistances to wear and spalling were investigated. Tests were carried out with own made measures, and also a calculation was tried for the comparison of a part of results like spalling. Worn width by scrubbing the indenter on the coating layer increased significantly at high temperature. Temperature increasing rate across the specimen when the coating side was exposed to $1000^{\circ}C$ was in the range of $14.5{\sim}75.8^{\circ}C$/sec mm, and specimens with thicker coating layer showed lower temperature increase. Severe spalling of coated layer was observed after heating the specimen, and it was able to confirm by calculation using a commercial code.

Application of an integro-differential equation to the analysis of geotechnical problems

  • Poorooshasb, H.B.;Alamgir, M.;Miura, N.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.227-242
    • /
    • 1996
  • An important class of problems in the field of geotechnical engineering may be analyzed with the aid of a simple integro-differential equation. Behavior of "rigid" piles(say concrete piles), "deformable" piles(say gravel piles), pile groups, pile-raft foundations, heavily reinforced earth, flow within circular silos and down drag on cylindrical structures (for example the crusher unit of a mineral processing complex) are the type of situations that can be handled by this type of equation. The equation under consideration has the form; $$\frac{{\partial}w(r,\;z)}{{\partial}z}+f(z){\int}^z_0g({\xi})(\frac{{\partial}^2w(r,\;{\xi})}{{\partial}r^2}+\frac{1}{r}\frac{{\partial}w(r,\;{\xi})}{{\partial}r})d{\xi}+h(r,\;z)=0$$ where w(r, z) is the vertical displacement of a soil particle expressed as a function of the polar cylindrical space coordinates (r, z) and the symbols f, g and h represent soil properties and the loading conditions. The merit of the analysis is its simplicity (both in concept and in application) and the ease with which it can be expressed in a computer code. In the present paper the analysis is applied to investigate the behavior of a single rigid pile to bedrock. The emphasis, however, is placed on developing the equation, the numerical techique used in its evaluation and validation of the technique, hereafter called the ID technique, against a formal program, CRISP, which uses the FEM.

Thermal Stress Analysis of Spent Fuel Vol-oxidizer Furnace on the Internal Pressure (내부 압력변화에 대한 사용후핵연료 분말화장치 가열로의 열 응력 해석)

  • Kim, Y.H.;Jung, J.H.;Hong, D.H.;Park, B.S.;Lee, J.K.;Yoon, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.136-140
    • /
    • 2006
  • We are developing a vol-oxidizer which transforms the spent $UO_2$ pellets into the $U_3O_8$ power through oxidizing process. The vol-oxidizer consists of furnace, filter, heater and valve etc. When the filter is blocked by the powder, the internal pressure of the furnace is increased owing to the air flow restriction. Then, the furnace vessel is swelled and deformed by it. In this paper, we proposed a procedure of the thermal analysis for furnace vessel design of spent fuel vol-oxidizer. In this work, we determined the thickness of the furnace through analyzing the internal pressure and the thermal stress of the furnace with respect to various pressure and temperature. To analyze the thermal stress, we used ANSYS 8.0 for constructing a FEM model of the furnace, and then analyzed it based on the ASME code. We also surveyed the material property and yield stress of SUS304 with various temperature. Analysis results are compared with the yield stress of the material. We manufactured the furnace and conduct the verification experiments.

  • PDF