• Title/Summary/Keyword: 3D Solid Element

Search Result 189, Processing Time 0.029 seconds

Path-dependent three-dimensional constitutive laws of reinforced concrete -formulation and experimental verifications-

  • Maekawa, Koichi;Irawan, Paulus;Okamura, Hajime
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.743-754
    • /
    • 1997
  • A three-dimensional constitutive modeling for reinforced concrete is presented for finite element nonlinear analysis of reinforced concrete. The targets of interest to the authors are columns confined by lateral steel hoops, RC thin shells subjected to combined in-plane and out-of-plane actions and massive structures of three-dimensional (3D) extent in shear. The elasto-plastic and continuum fracture law is applied to pre-cracked solid concrete. For post cracking formulation, fixed multi-directional smeared crack model is adopted for RC domains of 3D geometry subjected to monotonic and reversed cyclic actions. The authors propose a new scheme of decomposing stress strain fields into sub-planes on which 2D constitutive laws can be applied. The proposed model for 3D reinforced concrete is experimentally verified in both member and structural levels under cyclic actions.

A nonlinear model for ultimate analysis and design of reinforced concrete structures

  • Morfidis, Konstantinos;Kiousis, Panos D.;Xenidis, Hariton
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.695-710
    • /
    • 2014
  • This paper presents a theoretical and computational approach to solve inelastic structures subjected to overloads. Current practice in structural design is based on elastic analysis followed by limit strength design. Whereas this approach typically results in safe strength design, it does not always guarantee satisfactory performance at the service level because the internal stiffness distribution of the structure changes from the service to the ultimate strength state. A significant variation of relative stiffnesses between the two states may result in unwanted cracking at the service level with expensive repairs, while, under certain circumstances, early failure may occur due to unexpected internal moment reversals. To address these concerns, a new inelastic model is presented here that is based on the nonlinear material response and the interaction relation between axial forces and bending moments of a beam-column element. The model is simple, reasonably accurate, and computationally efficient. It is easy to implement in standard structural analysis codes, and avoids the complexities of expensive alternative analyses based on 2D and 3D finite-element computations using solid elements.

On soil-structure interaction models to simulate free vibrations and behavior under seismic loads of a RC building supported by a particular shallow foundation

  • Soelarso Soelarso;Jean-Louis Batoz;Eduard Antaluca;Fabien Lamarque
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.461-479
    • /
    • 2023
  • The paper deals with the finite element modelling of the free vibration and structural behavior of a particular four-floor reinforced concrete structure subjected to static equivalent seismic loads and supported by a shallow foundation system called SNSF (Spider Net System Footing). The two FE models are a simple 2D Matlab model and a detailed 3D model based on solid elastic elements using Altairworks (Hypermesh and Optistruct). Both models can simulate the soil structure interaction. We concentrate on the behavior of a representative cell involving two columns on five levels. The influence of the boundary conditions on the external vertical planes of the domain are duly studied. The Matlab model appears relevant for a primary estimation of frequencies and stiffness of the whole structure under vertical and lateral loads.

Development of the Optimal Design Program and the 3-D Modeling for the Helical Gear (헬리컬 기어의 최적 설계 프로그램 개발 및 3차원 모델링)

  • Kwak, Jae-Seob;Chung, Sung-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.107-114
    • /
    • 2000
  • Recently the studies on the vibration and the noise of a helical gear transmission have been focused on the many researchers. The manufacturing error and the deformation of the tooth profile, which generates the vibration and the noise of the gear transmission, are main factors. The major purpose of this study is to develop an optimal design program for reducing the vibration and the noise of the helical gear. To obtain the these results, we restrain the helical gear from the deformation of the tooth profile and increase the contact ratio within the optimal design program. Furthermore we made the three-dimensional solid modeling of the helical gear from the AutoCAD and the Pro/Engineer. This model will be available to generate the finite element model and the NC code.

  • PDF

Finite Element Modeling for Static and Dynamic Analysis of Structures with Bolted Joints (볼트결합부를 포함한 구조물의 정적 및 동적 해석을 위한 유한요소 모델링)

  • Gwon, Yeong-Du;Gu, Nam-Seo;Kim, Seong-Yun;Jo, Min-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.667-676
    • /
    • 2002
  • Many studies on the finite element modeling for bolted joints have proceeded, but the structures with bolted joints are complicated in shape and it is difficult to find out the characteristics according to joint condition. Usually, experimental methods have been used for bolted joint analysis. A reliable and practical finite element modeling technique for structure with bolted joints is very important for engineers in industry. In this study, three kinds of model are presented; a detailed model, a practical model and a simple model. The detailed model is modeled by using 3-D solid element and gap element, and the practical model is modeled by using shell element (a portion of bolt head) and beam element (a portion of bolt body), the simple model is modeled by simplifying practical model without using gap elements. Among these models, the simple model has the least degree of freedom and show the effect of memory reduction of 59%, when compared with the detailed model.

2차원도면으로 표현된 각주형 부품의 특징형상인식

  • 박재민;이충수;박경진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.426-431
    • /
    • 1997
  • Features are well recognized to play an important role for the integration of ACD and CAPP. Majority of pervious works for the feature recognition for prismatic part is based on 3D solid model. But in real factories, 2D drawing are used more than 3D drawings. In this paper, we develope an algorithm of the feature recognition on prismatic parts in 2D drawings, using by the graph method and the heuristic algorithm. Previous algorithms have some conflicts at feature interaction. In this paper, elements are grouped into connection by the graph method. Then features are recognized by using these grouped elements and their relationships of front and side-view. For resolving the problem of feature interaction, the element graphs are modified by an deloped algorithm. This algorithm is applied to a CAPP system for milling process planning.

  • PDF

Integrity Evaluation for 3D Cracked Structures(II) (3차원 균열을 갖는 구조물에 대한 건전성 평가(II))

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Three Surface cracks are among the more common flaws in aircraft and pressure vessel components. Accurate stress intensity analyses and crack growth rate data of surface-cracked components are needed for reliable prediction of their fatigue life and fracture strengths. Three Dimensional finite element method (FEM) was used to obtain the stress intensity factor for surface cracks existing in structures. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Nodes are generated by bucket method, and quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in cylindrical structures subjected to pressure is calculated. Analysis results by present system showed good agreement with those by ASME equation and Raju-Newman's equation.

Three-Dimensional Vibration Analysis of Solid and Hollow Hemispheres Having Varying Thickness (변두께를 갖는 두꺼운 반구형 쉘과 반구헝체의 3차원적 진동해석)

  • 심현주;장경호;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components μ/sub Φ/, μ/sub z/, and μ/sub θ/ in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the Φ and z directions. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3-D Ritz solutions and other 3-D finite element ones.

Computer-aided Design and Fabrication of Bio-mimetic Scaffold for Tissue Engineering Using the Triply Periodic Minimal Surface (삼중 주기적 최소곡면을 이용한 조직공학을 위한 생체모사 스캐폴드의 컴퓨터응용 설계 및 제작)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.834-850
    • /
    • 2011
  • In this paper, a novel tissue engineering scaffold design method based on triply periodic minimal surface (TPMS) is proposed. After generating the hexahedral elements for a 3D anatomical shape using the distance field algorithm, the unit cell libraries composed of triply periodic minimal surfaces are mapped into the subdivided hexahedral elements using the shape function widely used in the finite element method. In addition, a heterogeneous implicit solid representation method is introduced to design a 3D (Three-dimensional) bio-mimetic scaffold for tissue engineering from a sequence of computed tomography (CT) medical image data. CT image of a human spine bone is used as the case study for designing a 3D bio-mimetic scaffold model from CT image data.

Meso scale model for fiber-reinforced-concrete: Microplane based approach

  • Smolcic, Zeljko;Ozbolt, Josko
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.375-385
    • /
    • 2017
  • In the present paper experimental and numerical analysis of hook-ended steel fiber reinforced concrete is carried out. The experimental tests are performed on notched beams loaded in 3-point bending using fiber volume fractions up to 1.5%. The numerical analysis of fiber reinforced concrete beams is performed at meso scale. The concrete is discretized with 3D solid finite elements and microplane model is used as a constitutive law. The fibers are modelled by randomly generated 1D truss finite elements, which are connected with concrete matrix by discrete bond-slip relationship. It is demonstrated that the presented approach, which is based on the modelling of concrete matrix using microplane model, able to realistically replicate experimental results. In all investigated cases failure is due to the pull-out of fibers. It is shown that with increase of volume content of fibers the effective bond strength and slip capacity of fibers decreases.