• Title/Summary/Keyword: 3D Sketching

Search Result 14, Processing Time 0.024 seconds

The Intuitive Change of Virtual Wand Style in Spatial Sketch System (가상 완드 스타일의 직관적인 변형을 지원하는 공간 스케치 시스템)

  • Nam, Sang-Hun;Chai, Young-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.56-61
    • /
    • 2009
  • According to the target object for designer to sketch, an effective style or shape of input device can be defined differently. The general spatial sketching system that support various types of wand assist sketching effectively as changing suitable wand shape to the part of a target object. We suggest the idea of changing wand style by altering the posture of a 3D wand. This allows a designer to work in an intuitive way without being interrupted by complicated menus. We implement the various wand styles to the spatial sketching system with cubic-based drawing technique.

  • PDF

Surface Deformation by using 3D Target Curve for Virtual Spatial Design (가상 공간 디자인을 위한 3차원 목표곡선을 이용한 곡면 변형)

  • Kwon, Jung-Hoon;Lee, Jeong-In;Chai, Young-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.868-876
    • /
    • 2006
  • 2D input data have to be converted into 3D data by means of some functions and menu system in 2D input modeling system. But data in 3D input system for virtual spatial design can be directly connected to the 3D modeling data. Nevertheless, efficient surface modeling and deformation algorithm for the 3D input modeling system are not proposed yet. In this paper, problems of conventional NURBS surface deformation methods which can occur when applied in the 3D input modeling system are introduced. And NURBS surface deformation by 3D target curves, in which the designer can easily approach, are suggested. Designer can efficiently implement the virtual spatial sketching and design by using the proposed deformation algorithm.

A Novel 3D Modeling Technique by Spatial Tiling of the Pre-defined Cubical Grids (정의된 육면 격자의 공간 타일링에 의한 3차원 모델링)

  • Nam, Sang-Hun;Chai, Young-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.103-108
    • /
    • 2008
  • In case of the 3D Sketch System for spatial modeling, The use of 3D input devices in 3D environment is the best method to express designer's intention. However, the designer's 3D drawing skill is not accurate. 80, we use the multiple strokes used generally by 2D sketch. Multiple strokes make the designer recognize model's current drawing features and what he change We use the cubic-based drawing method to calculate many surfaces in real time. We arrange the relations of cubes for composing surfaces and multi strokes. We implement the sketch system taking cubic modeling and multiple strokes technique.

  • PDF

A Surface Modeling Algorithm by Combination of Internal Vertexes in Spatial Grids for Virtual Conceptual Sketch (공간격자의 내부정점 조합에 의한 가상 개념 스케치용 곡면 모델링 알고리즘)

  • Nam, Sang-Hoon;Kim, Hark-Soo;Chai, Young-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.3
    • /
    • pp.217-225
    • /
    • 2009
  • In case of sketching a conceptual model in 3D space, it's not easy for designer to recognize the depth cue accurately and to draw a model correctly in short time. In this paper, multi-strokes based sketch is adopted not only to reduce the error of input point but to substantiate the shape o) the conceptual design effectively. The designer can see the drawing result immediately after stroking some curves. The shape can also be modified by stroking curves repeatedly and be confirmed the modified shape in real time. However, the multi-strokes based sketch needs to manage the great amount of input data. Therefore, the drawing space is divided into the limited spatial cubical grids and the movable infernal vertex in each spatial grid is implemented and used to define the surface by the multi-strokes. We implemented the spatial sketching system which allows the concept designer's intention to 3D model data efficiently.

NURBS Surface Deformation with 3D Target Curve for Virtual Design (가상 디자인을 위한 3 차원 목표곡선을 이용한 곡면 변형)

  • Lee, Jeong-In;Chai, Young-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.474-479
    • /
    • 2006
  • 컴퓨터 기술이 발전함에 따라 3 차원 입력시스템을 통한 모델링이 가능하게 되었다. 2 차원 시스템은 평면 입력을 공간상의 데이터로 바꾸기 위한 많은 기능과 메뉴들이 존재하지만 3 차원 시스템에서는 그러한 복잡한 기능 없이 입력 데이터가 곧바로 모델링에 적용될 수 있다. 하지만 아직까지 3 차원 입력시스템에서 모델링을 수행하는 디자이너에게 익숙한 스케치 방법을 고려하지 못하고 있는 실정이다. 디자이너에게 가장 익숙한 모델링 방법은 스케치북에 선으로 그림을 그리는 것이기 때문에, 모델을 변형하는 방법은 이를 벗어나지 않도록 해야 한다. 평면 스케치에서 디자이너가 그리는 선은 모델의 윤곽을 잡아주고 모델의 특징이 되는 부분을 표현하게 된다. 이러한 선의 입력을 통한 스케치를 3 차원 모델링에서 그대로 사용하기 위해서는 공간에서의 점이나 면이 아닌 선의 입력을 모델링에 적용할 수 있어야 한다.

  • PDF

Development and Application of Instruction Program using 3D Sketching Software for 'Planning for Residential Space' Unit of NCS-based on Interior Design Subject (NCS 실내디자인 과목의 '주거공간 계획하기' 단원에서 3차원 스케치 소프트웨어를 활용한 수업 프로그램 개발 및 적용 효과)

  • Ji, Ae-Hee;Yoo, Hyun-Seok
    • 대한공업교육학회지
    • /
    • v.44 no.2
    • /
    • pp.1-27
    • /
    • 2019
  • In recent years, space planning ability using 3D sketch software is required in the working field of interior design. However, vocational high school do not respond appropriately to changes in the industry, because the class of vocational high school consists of hands-on practical classes and 2D CAD based classes. There is a shortage of 3D sketch software-based instruction programs that can improve students' spatial planning skills. Therefore, this study is to develop instruction program using 3D sketch software for 'Planning for Residential Space' unit of NCS-based on interior design subject and to find out the effect on students' academic achievement by applying to vocational high school class. The 3d sketch software based instructional program developed in this study was developed through four stages of preparation, development, implementation and evaluation according to the PDIE model process. The experimental design model used nonequivalent group posttest-only design in this study. Experiments were conducted on vocational high school students in construction and 9 hours of interior design subjects were applied. After the experiments, students were tested for academic achievement in the cognitive, affective, and psychomotor areas. As a result, the instruction program using the 3d sketch program developed in this study was found to be more effective in improving students' academic achievement than existing manual instruction program in both cognitive, affective, and psychomotor areas.

Sketch-based 3D modeling by aligning outlines of an image

  • Li, Chunxiao;Lee, Hyowon;Zhang, Dongliang;Jiang, Hao
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.286-294
    • /
    • 2016
  • In this paper we present an efficient technique for sketch-based 3D modeling using automatically extracted image features. Creating a 3D model often requires a drawing of irregular shapes composed of curved lines as a starting point but it is difficult to hand-draw such lines without introducing awkward bumps and edges along the lines. We propose an automatic alignment of a user's hand-drawn sketch lines to the contour lines of an image, facilitating a considerable level of ease with which the user can carelessly continue sketching while the system intelligently snaps the sketch lines to a background image contour, no longer requiring the strenuous effort and stress of trying to make a perfect line during the modeling task. This interactive technique seamlessly combines the efficiency and perception of the human user with the accuracy of computational power, applied to the domain of 3D modeling where the utmost precision of on-screen drawing has been one of the hurdles of the task hitherto considered a job requiring a highly skilled and careful manipulation by the user. We provide several examples to demonstrate the accuracy and efficiency of the method with which complex shapes were achieved easily and quickly in the interactive outline drawing task.

3D Modeling of Self-Occluding Objects from 2D Drawings (자기폐색 물체의 2D 커브로부터의 3D모델링)

  • Cordier Frederic;Seo Hye-Won;Cho Young-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.9
    • /
    • pp.741-750
    • /
    • 2006
  • In this paper, we propose a method for reconstructing a 3D object (or a set of objects) from a 2D drawing provided by a designer. The input 2D drawing consists of a set of contours that may partially overlap each other or be self-overlapping. Accordingly, the resulting 3D object(s) may occlude each other or be self-occluding. The proposed method is composed of three major steps: 2D contour analysis, 3D skeleton computation, and 3D object construction. Our main contribution is to compute the 3D skeleton from the self-intersecting 2D counterpart. We formulate the 3D skeleton construction problem as a sequence of optimization problems, to shape the skeleton and place it in the 3D space while satisfying C1-continuity and intersection-free conditions. Our method is mainly for a silhouette-based sketching interface for the design of 3D objects including self-intersecting objects.

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.

An Evaluation of Visual Reality in Virtual Environment (가상활경에서의 Visual Reality에 대한 평가)

  • 서형준;김현정;고희동;최윤철
    • Science of Emotion and Sensibility
    • /
    • v.2 no.1
    • /
    • pp.129-135
    • /
    • 1999
  • 본 연구는 3D Visual and Auditory Environment Generator(VAEG)에 의해 표현되는 가상환경에서 시각적 현실감의 정도를 평가하고자 하는데 그 목적이 있다. VAEG는 인간의 감성과 일치하는 제품을 설계할 수 있는 prototyping simulator의 일부이다. 계층적인 가상환경을 구성하는 요소로써 size, length, distance 세가지 요소를 선정하여, estimating size/distance, sketching map, 그리고 searching objects와 같은 다양한 방법을 통해 가상환경과 실제환경에서의 시각적인 현실감 차이를 비교하고자 하였다. 실험은 피험자들이 가상환경을 항해하고, 과제를 수행한 후에 설문에 응답하도록 하는 방식으로 진행되었으며, sketched map과 설문서 간의 상관관계를 통해 가상현실시스템의 현실감을 향상시킬 수 있는 보완요소들을 추출할 수 있도록 설계되었다.

  • PDF