• 제목/요약/키워드: 3D Res-Inception

검색결과 4건 처리시간 0.02초

3D Res-Inception Network Transfer Learning for Multiple Label Crowd Behavior Recognition

  • Nan, Hao;Li, Min;Fan, Lvyuan;Tong, Minglei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1450-1463
    • /
    • 2019
  • The problem towards crowd behavior recognition in a serious clustered scene is extremely challenged on account of variable scales with non-uniformity. This paper aims to propose a crowed behavior classification framework based on a transferring hybrid network blending 3D res-net with inception-v3. First, the 3D res-inception network is presented so as to learn the augmented visual feature of UCF 101. Then the target dataset is applied to fine-tune the network parameters in an attempt to classify the behavior of densely crowded scenes. Finally, a transferred entropy function is used to calculate the probability of multiple labels in accordance with these features. Experimental results show that the proposed method could greatly improve the accuracy of crowd behavior recognition and enhance the accuracy of multiple label classification.

딥러닝 기반 교량 구성요소 자동 분류 (Automatic Classification of Bridge Component based on Deep Learning)

  • 이재혁;박정준;윤형철
    • 대한토목학회논문집
    • /
    • 제40권2호
    • /
    • pp.239-245
    • /
    • 2020
  • 최근 BIM (Building Information Modeling)이 건설 산업계에서 폭넓게 활용되고 있다. 하지만 과거에 시공이 된 구조물에 경우 대부분 BIM이 구축되어 있지 않다. BIM이 구축되지 않은 구조물의 경우, 카메라로부터 얻은 2D 이미지에 SfM (Structure from Motion) 기법을 활용하면 3D 모델의 점군 데이터(Point cloud)를 생성하고 BIM을 구축할 수 있다. 하지만 이렇게 생성된 점군 데이터는 의미론적 정보가 포함되어 있지 않기 때문에, 수작업으로 구조물의 어떤 요소인지 분류해 주어야 한다. 따라서 본 연구에서는 구조물 구성요소를 분류하는 과정을 자동화하기 위하여 딥러닝을 적용하였다. 딥러닝 네트워크 구축에는 CNN (Convolutional Neural Network) 구조의 Inception-ResNet-v2를 사용하였고, 전이학습을 통하여 교량 구조물의 구성요소를 학습하였다. 개발된 시스템을 검증하기 위하여 수집한 데이터를 이용하여 구성요소를 분류한 결과, 교량의 구성요소를 96.13 %의 정확도로 분류할 수 있었다.

딥러닝 기반 CT 스캔 재구성을 통한 조영제 사용 및 신체 부위 분류 성능 향상 연구 (A Study on the Use of Contrast Agent and the Improvement of Body Part Classification Performance through Deep Learning-Based CT Scan Reconstruction)

  • 나성원;고유선;김경원
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.293-301
    • /
    • 2023
  • 표준화되지 않은 의료 데이터 수집 및 관리는 여전히 수동으로 진행되고 있어, 이 문제를 해결하기 위해 딥 러닝을 사용해 CT 데이터를 분류하는 연구들이 진행되고 있다. 하지만 대부분 연구에서는 기본적인 CT slice인 axial 평면만을 기반으로 모델을 개발하고 있다. CT 영상은 일반 이미지와 다르게 인체 구조만 묘사하기 때문에 CT scan을 재구성하는 것만으로도 더 풍부한 신체적 특징을 나타낼 수 있다. 이 연구는 axial 평면뿐만 아니라 CT 데이터를 2D로 변환하는 여러가지 방법들을 통해 보다 높은 성능을 달성할 수 있는 방법을 찾고자 한다. 훈련은 5가지 부위의 CT 스캔 1042개를 사용했고, 모델 평가를 위해 테스트셋 179개, 외부 데이터셋으로 448개를 수집했다. 딥러닝 모델 개발을 위해 ImageNet으로 사전 학습된 InceptionResNetV2를 백본으로 사용하였으며, 모델의 전체 레이어를 재 학습했다. 실험결과 신체 부위 분류에서는 재구성 데이터 모델이 99.33%를 달성하며 axial 모델보다 1.12% 더 높았고, 조영제 분류에서는 brain과 neck에서만 axial모델이 높았다. 결론적으로 axial slice로만 훈련했을 때 보다 해부학적 특징이 잘 나타나는 데이터로 학습했을 때 더 정확한 성능 달성이 가능했다.

CT 정도관리를 위한 인공지능 모델 적용에 관한 연구 (Study on the Application of Artificial Intelligence Model for CT Quality Control)

  • 황호성;김동현;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권3호
    • /
    • pp.182-189
    • /
    • 2023
  • CT is a medical device that acquires medical images based on Attenuation coefficient of human organs related to X-rays. In addition, using this theory, it can acquire sagittal and coronal planes and 3D images of the human body. Then, CT is essential device for universal diagnostic test. But Exposure of CT scan is so high that it is regulated and managed with special medical equipment. As the special medical equipment, CT must implement quality control. In detail of quality control, Spatial resolution of existing phantom imaging tests, Contrast resolution and clinical image evaluation are qualitative tests. These tests are not objective, so the reliability of the CT undermine trust. Therefore, by applying an artificial intelligence classification model, we wanted to confirm the possibility of quantitative evaluation of the qualitative evaluation part of the phantom test. We used intelligence classification models (VGG19, DenseNet201, EfficientNet B2, inception_resnet_v2, ResNet50V2, and Xception). And the fine-tuning process used for learning was additionally performed. As a result, in all classification models, the accuracy of spatial resolution was 0.9562 or higher, the precision was 0.9535, the recall was 1, the loss value was 0.1774, and the learning time was from a maximum of 14 minutes to a minimum of 8 minutes and 10 seconds. Through the experimental results, it was concluded that the artificial intelligence model can be applied to CT implements quality control in spatial resolution and contrast resolution.