• Title/Summary/Keyword: 3D Printing Sensor

Search Result 48, Processing Time 0.026 seconds

Short Review of 3D Printed Piezoelectric Sensors

  • Chang, Sang-Mi;Kang, Chong-Yun;Hur, Sunghoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.279-285
    • /
    • 2022
  • Recently, 3D printing technology has gained increased attention in the manufacturing industry because it allows the manufacturing of complex but sophisticated structures as well as moderate production speed. Owing to advantages of 3D printers, such as flexible design, customization, rapid prototyping, and ease of access, can also be advantageous to sensor developments, 3D printing demands have increased in various active device fields, including sensor manufacturing. In particular, 3D printing technology is of significant interest in tactile sensor development where piezoelectric materials are typically embedded to acquire voltage signals from external stimuli. In regard with piezoelectricity, researchers have worked with various piezoelectric materials to achieve high piezoelectric response, but the structural approach is limited because ceramics have been regarded as challenging materials for complex design owing to their limited manufacturing methods. If appropriate piezoelectric materials and approaches to design are used, sensors can be fabricated with the improved piezoelectric response and high sensitivity that cannot be found in common bulk materials. In this study, various 3D printing technologies, material combinations, and applications of various piezoelectric sensors using the 3D printing method are reviewed.

Fused Deposition Modeling 3D Printing-based Flexible Bending Sensor (FDM 3D프린팅 기반 유연굽힘센서)

  • Lee, Sun Kon;Oh, Young Chan;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Recently, to improve convenience, flexible electronics are quickly being developed for a number of application areas. Flexible electronic devices comprise characters such as being bendable, stretchable, foldable, and wearable. Effectively manufacturing flexible electronic devices requires high efficiency, low costs, and simple processes for manufacturing technology. Through this study, we enabled the rapid production of multifunctional flexible bending sensors using a simple, low-cost Fused Deposition Modeling (FDM) 3D printer. Furthermore, we demonstrated the possibility of the rapid production of a range of functional flexible bending sensors using a simple, low-cost FDM 3D printer. Accurate and reproducible functional materials made by FDM 3D printers are an effective tool for the fabrication of flexible sensor electronic devices. The 3D-printed flexible bending sensor consisted of polyurethane and a conductive filament. Two patterns of electrodes (straight and Hilbert curve) for the 3D printing flexible sensor were fabricated and analyzed for the characteristics of bending displacement. The experimental results showed that the straight curve electrode sensor sensing ability was superior to the Hilbert curve electrode sensor, and the electrical conductivity of the Hilbert curve electrode sensor is better than the straight curve electrode sensor. The results of this study will be very useful for the fabrication of various 3D-printed flexible sensor devices with multiple degrees of freedom that are not limited by size and shape.

Manufacturing Experiments using FDM 3D-printed Flexible Resistance Sensors with Heterogeneous Polymer Material Annealing (이종 폴리머재료 어닐링을 이용한 유연저항센서 FDM 3D프린팅 제작실험)

  • Lee, Sun Kon;Oh, Young Chan;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • In this paper, the performances of the electrical characteristics of the Fused Deposition Modeling (FDM) 3D-printed flexible resistance sensor was evaluated. The FDM 3D printing flexible resistive sensor is composed of flexible-material thermoplastic polyurethane and a conductive PLA (carbon black conductive polylactic acid) polymer. While 3D printing, polymer filaments heat up quickly before being extruded and cooled down quickly. Polymers have poor thermal conductivity so the heating and cooling causes unevenness, which then results in internal stress on the printed parts due to the rapidity of the heating and cooling. Electrical resistance measurements show that the 3D-printed flexible sensor is unstable due to internal stress, so the 3D-printed flexible sensor resistance curve does not match the increases and decreases in the displacement curve. Therefore, annealing was performed to eliminate the mismatch between electrical resistance and displacement. Annealing eliminates residual stress on the sensor, so the electrical resistance of the sensor increases and decreases in proportion to displacement. Additionally, the resistance is lowered in comparison to before annealing. The results of this study will be very useful for the fabrication of various devices that employ 3D-printed flexible sensor that have multiple degrees of freedom and are not limited by size and shape.

A review of 3D printing technology for piezoresistive strain/loadcell sensors (3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로)

  • Cho, Jeong Hun;Moon, Raymond Hyun Woo;Kim, Sung Yong;Choi, Baek Gyu;Oh, Gwang Won;Joung, Kwan Young;Kang, In Pil
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.388-394
    • /
    • 2021
  • The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.

A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing (3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구)

  • Kim, Sung Yong;Kang, Inpil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • This paper presents an ongoing study to develop a novel pressure sensor by means of a Nano Carbon Piezoresistive Composite (NCPC). The sensor was fabricated using the 3D printing process. We designed a miniaturized cantilever-type sensor electrode to improve the pressure sensing performance and utilized a 3D printer to build a small-sized body. The sensor electrode was made of 2 wt% MWCNT/epoxy piezoresistive nano-composite, and the sensor body was encapsulated with a pipe plug cap for easy installation to any pressure system. The piezoresistivity responses of the sensor were converted into stable voltage outputs by using a signal processing system, which is similar to a conventional foil strain gauge. We evaluated the pressure-sensing performances using a pressure calibrator in the lab environment. The 3D-printed cantilever electrode pressure sensor showed linear voltage outputs of up to 16,500 KPa, which is a 200% improvement in the pressure sensing range when compared with the bulk-type electrode used in our previous work.

Distributed Monitoring Technology using Fiber-Optic Embedded Sensor (광섬유 임베디드 센서 기반 분포 모니터링 기술)

  • Kim, Youngwoong;Kim, Jong-Yeol;Ryu, Gukbeen;Hwang, Young-Gwan;Kim, Hyun-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.617-619
    • /
    • 2022
  • An embedded fiber-optic sensor was manufactured using 3D printing technology for distributed structural monitoring. Strain distribution of the embedded sensor was measured by the optical frequency domain reflectometry, and real-time data visualization for the embedded sensor model was demonstrated.

  • PDF

Stencil-based 3D facial relief creation from RGBD images for 3D printing

  • Jung, Soonchul;Choi, Yoon-Seok;Kim, Jin-Seo
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.272-281
    • /
    • 2020
  • Three-dimensional (3D) selfie services, one of the major 3D printing services, print 3D models of an individual's face via scanning. However, most of these services require expensive full-color supporting 3D printers. The high cost of such printers poses a challenge in launching a variety of 3D printing application services. This paper presents a stencil-based 3D facial relief creation method employing a low-cost RGBD sensor and a 3D printer. Stencil-based 3D facial relief is an artwork in which some parts are holes, similar to that in a stencil, and other parts stand out, as in a relief. The proposed method creates a new type of relief by combining the existing stencil techniques and relief techniques. As a result, the 3D printed product resembles a two-colored object rather than a one-colored object even when a monochrome 3D printer is used. Unlike existing personalization-based 3D printing services, the proposed method enables the printing and delivery of products to customers in a short period of time. Experimental results reveal that, compared to existing 3D selfie products printed by monochrome 3D printers, our products have a higher degree of similarity and are more profitable.

Development of Low-cost 3D Printing Bi-axial Pressure Sensor (저가형 3D프린팅 2축 압력 센서 개발)

  • Choi, Heonsoo;Yeo, Joonseong;Seong, Jihun;Choi, Hyunjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.152-158
    • /
    • 2022
  • As various mobile robots and manipulator robots have been commercialized, robots that can be used by individuals in their daily life have begun to appear. With the development of robots that support daily life, the interaction between robots and humans is becoming more important. Manipulator robots that support daily life must perform tasks such as pressing buttons or picking up objects safely. In many cases, this requires expensive multi-axis force/torque sensors to measure the interaction. In this study, we introduce a low-cost two-axis pressure sensor that can be applied to manipulators for education or research. The proposed system used three force sensitive resistor (FSR) sensors and the structure was fabricated by 3D printing. An experimental device using a load cell was constructed to measure the biaxial pressure. The manufactured prototype was able to distinguish the +-x-axis and the +-y-axis pressures.

A Study on Tensile Strength of the Product According to Humidity During 3D Printing Process (3D프린팅 공정 중 공기 습도에 따른 출력물의 인장 강도에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.177-181
    • /
    • 2021
  • Scaffolds protect the sensor in the body. Scaffolds are made of a bioabsorbable polymer. The polymer process is sensitive to humidity. Inside of the 3D printer has been improved to control the humidity. Specimens were produced by injection molding and 3D printer. 3D printed specimens were printed under various humidity conditions. We measured tensile strength of the injection-molded specimen and tensile strength of the 3d printing specimen. We compared tensile strength of the injection-molded specimen and tensile strength of the 3d printing specimen. Tensile strength of the injection-molded specimen is 557 kgf/cm2. We confirmed tensile strength of the specimen was highest at 741 kgf/cm2 when the humidity was 10 %. We confirmed lower the humidity, higher tensile strength of the polymer product.

Conformal Design of PDMS Mold for Arbitrary Skin Surface with 3D Printing (3D Printing 공정을 이용한 PDMS Mold 제작)

  • Kim, KwangYoon;Park, SukHee;Lee, HanBit;Lee, NakGyu;Yoon, JongHun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.553-560
    • /
    • 2017
  • 3D printing technology has been a great interest in human bio-interfaces and human-like robotics since they require arbitrary and adaptive manufacturing. This research mainly concerns the 3D fabrication of a packed biosensor using elastomeric sheets made of PDMS. It is essential to design the PDMS molding with 3D printing since, in the case of biosensors, it should not only produce a conformal shape depending on an arbitrary skin surface but also guarantee a uniform thickness distribution during solidification in the PDMS prepolymer solution. To satisfy the characteristics of the PDMS molding, such as flexibility in the de-molding and stiffness in the solidification processes, multi-materials have been selectively applied to the PDMS molding design, which has been validated with finite element analyses and compared with the 3D printed molding.