• Title/Summary/Keyword: 3D Position Tracking

Search Result 155, Processing Time 0.024 seconds

Tracking of Moving Objects for Mobile Mapping System (모바일매핑시스템에서의 이동객체 추적을 위한 연구)

  • Jung, Jae-Seung;Park, Jae-Min;Kim, Byung-Guk
    • Spatial Information Research
    • /
    • v.14 no.2 s.37
    • /
    • pp.235-244
    • /
    • 2006
  • The MMS(Mobile Mapping System) using the vehicle equipped GPS, IMU and CCD Cameras is the effective system for the management of the road facilities, update of the digital map, and etc. The image, vehicle's 3 dimensional position and attitude information provided MMS is a important source for positioning objects included the image. In this research we applied the tracking technique to the specific object in image. The extraction of important object from immense MMS data makes more effectiveness in this system.

  • PDF

A Moving Camera Localization using Perspective Transform and Klt Tracking in Sequence Images (순차영상에서 투영변환과 KLT추적을 이용한 이동 카메라의 위치 및 방향 산출)

  • Jang, Hyo-Jong;Cha, Jeong-Hee;Kim, Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.163-170
    • /
    • 2007
  • In autonomous navigation of a mobile vehicle or a mobile robot, localization calculated from recognizing its environment is most important factor. Generally, we can determine position and pose of a camera equipped mobile vehicle or mobile robot using INS and GPS but, in this case, we must use enough known ground landmark for accurate localization. hi contrast with homography method to calculate position and pose of a camera by only using the relation of two dimensional feature point between two frames, in this paper, we propose a method to calculate the position and the pose of a camera using relation between the location to predict through perspective transform of 3D feature points obtained by overlaying 3D model with previous frame using GPS and INS input and the location of corresponding feature point calculated using KLT tracking method in current frame. For the purpose of the performance evaluation, we use wireless-controlled vehicle mounted CCD camera, GPS and INS, and performed the test to calculate the location and the rotation angle of the camera with the video sequence stream obtained at 15Hz frame rate.

Development of Localization Tracking System and User Interface of Guiding Robot for the Visually Impaired (시각장애인 유도 로봇의 자기 위치 추적 시스템 및 사용자 인터페이스 개발)

  • Ryu Je-Goon;Shen Dong-Fan;Kwon Oh-Sang;Kim Nack-Hwan;Lee Sang-Moo;Lee Eung-Hyuk;Hong Seung-Hong
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.481-492
    • /
    • 2005
  • To guide the guiding robot for the visually impaired carefully, the digital map to be used to search a path must be detailed and has some information about dangerous spots. It also has to search not only safe but also short path through the position data by GPS and INS sensors. In this paper, as the difference of the ability that the visually unpaired can recognize, we have developed the localization tracking system so that it can make a movement path and verify position information, and the global navigation system for the visually impaired using the GPS and INS. This system can be used when the visually impaired move short path relatively. We had also verified that the system was able to correct the position as the assistant navigation system of the GPS on the outside.

Magnetic Wireless Motion Capturing System and its Application for Jaw Tracking System and 3D Computer Input Device

  • Yabukami, S.;Arai, K.;Arai, K.I.;Tsuji, S.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.70-73
    • /
    • 2003
  • We have developed a new tracking system of jaw movement. The system consists of two permanent NdFeB magnets and 32 elements of two-axial fluxgate sensor array, The two magnets are attached to head portion and front tooth. This system does not need any attachments of the head portion or mouth such as clutch or magnetic field sensor except magnets. The proposed system is applicable for five degree of freedom. Position accuracy within 2]m was achieved. We developed a 3D computer input device by using the above mentioned technique.

Realization of Fairy Tale - Robot Aquarium Display System with Visitor Interaction (관람객과 상호 교감하는 전래동화-로봇의 수중무대 연출시스템 구현)

  • Shin, Kyoo-Jae
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1180-1187
    • /
    • 2018
  • This paper had implemented the underwater stage through interaction with fish robots and visitors in the background of traditional fairy tales using 3D floating hologram in an aquarium. The recognition of the object position of the spectator and the underwater robot were performed using the color recognition algorithm. Also, the position tracking algorithm was proposed to follow the object of the visitor and the original fairy tale. This experimental system consists of fish robot, camera, KIOSK for underwater robot control and beam project for underwater imaging. This experiment was carried out by the National Busan Science Museum, and it had satisfied the performance of the underwater stage.

Tracking Moving Object using Hausdorff Distance (Hausdorff 거리를 이용한 이동물체 추적)

  • Kim, Tea-Sik;Lee, Ju-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.79-87
    • /
    • 2000
  • In this paper, we propose a model based moving object tracking algorithm In dynamic scenes To adapt shape change of the moving object, the Hausdorff distance is applied as the measurement of similarity between model and image To reduce processing time, 2D logarithmic search method is applied for locate the position of moving object Experiments on a running vehicle and motorcycle, the result showed that the mean square error of real position and tracking result is 1150 and 1845; matching times are reduced average 1125times and 523 times than existing algorithm for vehicle image and motorcycle image, respectively It showed that the proposed algorithm could track the moving object accurately.

  • PDF

Robot Target Tracking Method using a Structured Laser Beam (레이저 구조광을 이용한 로봇 목표 추적 방법)

  • Kim, Jong Hyeong;Koh, Kyung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1067-1071
    • /
    • 2013
  • A 3D visual sensing method using a laser structured beam is presented for robotic tracking applications in a simple and reliable manner. A cylindrical shaped laser structured beam is proposed to measure the pose and position of the target surface. When the proposed laser beam intersects on the surface along the target trajectory, an elliptic pattern is generated. Its ellipse parameters can be induced mathematically by the geometrical relationship of the sensor coordinate and target coordinate. The depth and orientation of the target surface are directly determined by the ellipse parameters. In particular, two discontinuous points on the ellipse pattern, induced by seam trajectory, indicate mathematically the 3D direction for robotic tracking. To investigate the performance of this method, experiments with a 6 axis robot system are conducted on two different types of seam trajectories. The results show that this method is very suitable for robot seam tracking applications due to its excellence in accuracy and efficiency.

A Hand Gesture Recognition System using 3D Tracking Volume Restriction Technique (3차원 추적영역 제한 기법을 이용한 손 동작 인식 시스템)

  • Kim, Kyung-Ho;Jung, Da-Un;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.201-211
    • /
    • 2013
  • In this paper, we propose a hand tracking and gesture recognition system. Our system employs a depth capture device to obtain 3D geometric information of user's bare hand. In particular, we build a flexible tracking volume and restrict the hand tracking area, so that we can avoid diverse problems caused by conventional object detection/tracking systems. The proposed system computes running average of the hand position, and tracking volume is actively adjusted according to the statistical information that is computed on the basis of uncertainty of the user's hand motion in the 3D space. Once the position of user's hand is obtained, then the system attempts to detect stretched fingers to recognize finger gesture of the user's hand. In order to test the proposed framework, we built a NUI system using the proposed technique, and verified that our system presents very stable performance even in the case that multiple objects exist simultaneously in the crowded environment, as well as in the situation that the scene is occluded temporarily. We also verified that our system ensures running speed of 24-30 frames per second throughout the experiments.

Real-Time 3D Display Scheme with Viewer-Position Tracking Capability (관찰자의 위치 추적에 따른 3차원(3D) 디스플레이의 실시간 제어)

  • Huh, Kyung-Moo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.555-557
    • /
    • 1997
  • 3차원 디스플레이에 있어서 여러 사람이 동시에 입체감 있게 3차원 영상을 볼 수 있게 하는 문제와, 관찰자가 움직이더라도 그 위치 변화를 추적하여 그에 따른 입체 영상의 변화를 반영함으로써 계속 양질의 3차원 영상을 볼 수 있도록 하는 문제들은 앞으로 해결해야 할 어려운 문제로 남아 있다. 본 논문에서는 이러한 문제들을 해결할 수 있는 방법을 제시하고 그에 따른 문제점 등을 살펴본다.

  • PDF

Development of Hovering AUV Test-bed for Underwater Explorations and Operations

  • Byun, Seung-Woo;Choi, Hyeung-Sik;Kim, Joon-Young
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.218-224
    • /
    • 2013
  • This paper describes the design and control of a hovering AUV test-bed and analyzes the dynamic performance of the vehicle using simulation programs. The main purpose of this vehicle is to carry out fundamental tests of its station keeping, attitude control, and desired position tracking. Its configuration is similar to the general appearance of an ROV for underwater operations, and its dimensions are $0.75m{\times}0.5m{\times}0.5m$. It has four 450-W thrusters for longitudinal/lateral/vertical propulsion and is equipped with a pressure sensor for measuring the water depth and a magnetic compass for measuring its heading angle. The navigation of the vehicle is controlled by an onboard Pentium III-class computer, which runs with the help of the Windows XP operating system. This provides an appropriate environment for developing the various algorithms needed for developing and advancing a hovering AUV.