• Title/Summary/Keyword: 3D Object Recognition

Search Result 268, Processing Time 0.028 seconds

Online Face Avatar Motion Control based on Face Tracking

  • Wei, Li;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.804-814
    • /
    • 2009
  • In this paper, a novel system for avatar motion controlling by tracking face is presented. The system is composed of three main parts: firstly, LCS (Local Cluster Searching) method based face feature detection algorithm, secondly, HMM based feature points recognition algorithm, and finally, avatar controlling and animation generation algorithm. In LCS method, face region can be divided into many small piece regions in horizontal and vertical direction. Then the method will judge each cross point that if it is an object point, edge point or the background point. The HMM method will distinguish the mouth, eyes, nose etc. from these feature points. Based on the detected facial feature points, the 3D avatar is controlled by two ways: avatar orientation and animation, the avatar orientation controlling information can be acquired by analyzing facial geometric information; avatar animation can be generated from the face feature points smoothly. And finally for evaluating performance of the developed system, we implement the system on Window XP OS, the results show that the system can have an excellent performance.

  • PDF

Recognition of Tactilie Image Dependent on Imposed Force Using Fuzzy Fusion Algorithm (접촉력에 따라 변하는 Tactile 영상의 퍼지 융합을 통한 인식기법)

  • 고동환;한헌수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 1998
  • This paper deals with a problem occuring in recognition of tactile images due to the effects of imposed force at a me urement moment. Tactile image of a contact surface, used for recognition of the surface type, varies depending on the forces imposed so that a false recognition may result in. This paper fuzzifies two parameters of the contour of a tactile image with the membership function formed by considering the imposed force. Two fuzzifed paramenters are fused by the average Minkowski's dist; lnce. The proposed algorithm was implemented on the multisensor system cnmposed of an optical tact le sensor and a 6 axes forceltorque sensor. By the experiments, the proposed algorithm has shown average recognition ratio greater than 869% over all imposed force ranges and object models which is about 14% enhancement comparing to the case where only the contour information is used. The pro- ~oseda lgorithm can be used for end-effectors manipulating a deformable or fragile objects or for recognition of 3D objects by implementing on multi-fingered robot hand.

  • PDF

Automatic Surface Matching for the Registration of LIDAR Data and MR Imagery

  • Habib, Ayman F.;Cheng, Rita W.T.;Kim, Eui-Myoung;Mitishita, Edson A.;Frayne, Richard;Ronsky, Janet L.
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.162-174
    • /
    • 2006
  • Several photogrammetric and geographic information system applications such as surface matching, object recognition, city modeling, environmental monitoring, and change detection deal with multiple versions of the same surface that have been derived from different sources and/or at different times. Surface registration is a necessary procedure prior to the manipulation of these 3D datasets. This need is also applicable in the field of medical imaging, where imaging modalities such as magnetic resonance imaging (MRI) can provide temporal 3D imagery for monitoring disease progression. This paper will present a general automated surface registration procedure that can establish correspondences between conjugate surface elements. Experimental results using light detection and ranging (LIDAR) and MRI data will verify the feasibility, robustness, and accuracy of this approach.

  • PDF

3D Object Recognition with Hierarchical Feature Learning (계층적 특징 학습을 이용한 3차원 물체 인식)

  • Kim, Joo-Hee;Kim, Dong-Ha;Kim, In-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.762-765
    • /
    • 2015
  • 본 논문에서는 물체의 모양 정보를 나타내는 물체 표면의 법선 벡터 데이터와 컬러 영상으로부터, 강한 표현력을 갖도록 학습을 통해 특징을 추출하는 효과적인 물체 인식 시스템을 제안한다. 본 논문에서 제안하는 물체 인식 시스템에서는 입력되는 깊이 영상을 물체 표면의 법선 벡터로 변환하여, 단순한 거리 측정치를 물체 인식에 유리한 표면 모양 정보로 활용하였을 뿐 아니라 센서 위치나 방향에 대한 의존성을 감소시켰다. 또한, 본 시스템에서는 실세계의 수많은 물체들의 고유한 특성들을 잘 표현해 줄 수 있도록, 다계층 학습을 통하여 특징을 추출하였다. 워싱턴 대학의 RGB-D 물체 데이터 집합을 이용하여 다양한 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제안하는 물체 인식 시스템의 높은 성능을 확인할 수 있었다.

Fast Scene Understanding in Urban Environments for an Autonomous Vehicle equipped with 2D Laser Scanners (무인 자동차의 2차원 레이저 거리 센서를 이용한 도시 환경에서의 빠른 주변 환경 인식 방법)

  • Ahn, Seung-Uk;Choe, Yun-Geun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.92-100
    • /
    • 2012
  • A map of complex environment can be generated using a robot carrying sensors. However, representation of environments directly using the integration of sensor data tells only spatial existence. In order to execute high-level applications, robots need semantic knowledge of the environments. This research investigates the design of a system for recognizing objects in 3D point clouds of urban environments. The proposed system is decomposed into five steps: sequential LIDAR scan, point classification, ground detection and elimination, segmentation, and object classification. This method could classify the various objects in urban environment, such as cars, trees, buildings, posts, etc. The simple methods minimizing time-consuming process are developed to guarantee real-time performance and to perform data classification on-the-fly as data is being acquired. To evaluate performance of the proposed methods, computation time and recognition rate are analyzed. Experimental results demonstrate that the proposed algorithm has efficiency in fast understanding the semantic knowledge of a dynamic urban environment.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

(Real Time Classification System for Lead Pin Images) (실시간 Lead Pin 영상 분류 시스템)

  • 장용훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1177-1188
    • /
    • 2002
  • To classify real time Lead pin images in this paper, The image acquisition system was composed to C.C.D, image frame grabber(DT3153), P.C(PentiumIII). I proposed image processing algorithms. This algorithms were composed to real time monitoring, Lead Pin image acquisition, image noise deletion, object area detection, point detection and pattern classification algorithm. The raw images were acquired from Lead pin images using the system. The result images were obtained from raw images by image processing algorithms. In implemental result, The right recognition was 97 of 100 acceptable products, 95 of 100 defective products. The recognition rate was 96% for total 200 Lead Pins.

  • PDF

Implementing Augmented Reality By Using Face Detection, Recognition And Motion Tracking (얼굴 검출과 인식 및 모션추적에 의한 증강현실 구현)

  • Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.97-104
    • /
    • 2012
  • Natural User Interface(NUI) technologies introduce new trends in using devices such as computer and any other electronic devices. In this paper, an augmented reality on a mobile device is implemented by using face detection, recognition and motion tracking. The face detection is obtained by using Viola-Jones algorithm from the images of the front camera. The Eigenface algorithm is employed for face recognition and face motion tracking. The augmented reality is implemented by overlapping the rear camera image and GPS, accelerator sensors' data with the 3D graphic object which is correspond with the recognized face. The algorithms and methods are limited by the mobile device specification such as processing ability and main memory capacity.

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

Recognition and Reconstruction of 3-D Polyhedral Object using Model-based Perceptual Grouping (모델 기반 지각적 그룹핑을 이용한 3차원 다면체의 인식 및 형상 복원)

  • 박인규;이경무;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.957-967
    • /
    • 2001
  • 본 논문에서는 모델 기반 지각적 그룹핑을 이용한 3차원 다면체의 인식 및 형상 복원에 관한 새로운 기법을 제안한다. 2차원 입력 영상과 여기에서 추출된 특징들의 3차원 특징을 거리 측정기를 이용하여 추출하여 인식 및 복원의 기본 특징으로 이용한다. 이 때, 모델의 3차원 기하학적 정보는 결정 트리 분류기에 의하여 학습되며 지각적 그룹핑은 이와 같은 모델 기반으로 이루어진다. 또한, 1차 그룹핑의 결과로 얻어진 3차원 직선 특징간의 관계는 Gestalt 그래프로 표현되며 이것의 부그래프 분할을 통하여 인식을 위한 후보 그룹이 생성된다. 마지막으로 각각의 후보 그룹은 3차원 모델과 정렬되어 가장 잘 부합되는 그룹을 인식 결과로 생성하게 된다. 그리고 정렬의 결과로서 2차원 텍스춰를 추출하여 3차원 모델에 매핑함으로써 실제적인 3차원 형상을 복원할 수 있다. 제안하는 알고리듬의 성능을 평가하기 위하여 불록 영상과 지형 모델 보드 영상에 대하여 실험을 수행하였다. 실험 결과, 모델 기반의 그룹핑 기법은 결과 그룹의 수를 상당히 감소시켰으며 또한 잡음과 가리워짐에 강건한 인식과 복원 결과가 얻어졌다.

  • PDF