• Title/Summary/Keyword: 3D NAND

Search Result 54, Processing Time 0.023 seconds

Implementation of a Prefetch method for Secondary Index Scan in MySQL InnoDB Engine (MySQL InnoDB엔진의 Secondary Index Scan을 위한 Prefetch 기능 구현)

  • Hwang, Dasom;Lee, Sang-Won
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.208-212
    • /
    • 2017
  • Flash SSDs have many advantages over the existing hard disks such as energy efficiency, shock resistance, and high I/O throughput. For these reasons, in combination with the emergence of innovative technologies such as 3D-NAND and V-NAND for cheaper cost-per-byte, flash SSDs have been rapidly replacing hard disks in many areas. However, the existing database engines, which have been developed mainly assuming hard disks as the storage, could not fully exploit the characteristics of flash SSDs (e.g. internal parallelism). In this paper, in order to utilize the internal parallelism intrinsic to modern flash SSDs for faster query processing, we implemented a prefetching method using asynchronous input/output as a new functionality for secondary index scans in MySQL InnoDB engine. Compared to the original InnoDB engine, the proposed prefetching-based scan scheme shows three-fold higher performance in the case of 16KB-page sizes, and about 4.2-fold higher performance in the case of 4KB-page sizes.

Study on the Activation Energy of Charge Migration for 3D NAND Flash Memory Application (3차원 플래시 메모리의 전하 손실 원인 규명을 위한 Activation Energy 분석)

  • Yang, Hee Hun;Sung, Jae Young;Lee, Hwee Yeon;Jeong, Jun Kyo;Lee, Ga won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.82-86
    • /
    • 2019
  • The reliability of 3D NAND flash memory cell is affected by the charge migration which can be divided into the vertical migration and the lateral migration. To clarify the difference of two migrations, the activation energy of the charge loss is extracted and compared in a conventional square device pattern and a new test pattern where the perimeter of the gate is exaggerated but the area is same. The charge loss is larger in the suggested test pattern and the activation energy is extracted to be 0.058 eV while the activation energy is 0.28 eV in the square pattern.

NAND Flash memory 소자 기술 동향

  • Lee, Hui-Yeol;Park, Seong-Gye
    • The Magazine of the IEIE
    • /
    • v.42 no.7
    • /
    • pp.26-38
    • /
    • 2015
  • 고집적화를 위한 Floating Gate NAND 개발과정에서 몇 차례 기술적 한계상황에 직면하였었지만, Air-Gap, Double patterning, Multi-level Cell, Error Correction Code과 같은 breakthrough idea 을 활용하여 1Xnm까지 성공적인 scale-down 을 하였고 10nm 까지도 바라보고 있지만, 10nm 미만으로는 적절한 방안을 찾지 못한 상황입니다. CTD 의 3D NAND Flash는 Aspect Ratio, Poly channel의 intrinsic 특성, Data 보존 능력 등 해결 해야 할 issue 들이 남아 있지만, F.G Flash 의 지난 20년간 Lesson-learn 과 Band engineering, Channel Si, PUC 의 요소기술 개발 및 System algorithm 개발, QLC 개발 등을 통하여 F.G Flash를 넘어 지속적인 Cost-down 이 가능할 것입니다.

Evaluation of Data Encoding Method Enhancing Program Performance of NAND Flash Memory (NAND 플래시 메모리의 프로그램 속도 개선을 위한 데이터 코드 변환 기법의 성능 평가)

  • Jeong, Gwanil;You, Soowon;Hyun, Choulseung;Lee, Donghee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.43-46
    • /
    • 2021
  • 다양한 응용에서 저장 매체로 사용되는 NAND 플래시 메모리는 저비용과 대용량을 위해 셀 당 비트 수 증가, 제조 공정의 미세화, 그리고 적층 기술 등 다양한 기술을 사용한다. 그렇지만 이러한 기술들은 플래시 메모리 셀의 안정성과 성능에 악영향을 준다. 특히 QLC 3D 플래시 메모리인 경우, 셀 상태가 많고 상태 간 임계 전압 간격이 좁기 때문에 프로그램과 읽기에 필요한 시간이 길다. 본 논문에서는 프로그램 수행 시간을 줄이고 셀 안정성에 긍정적인 영향을 줄 수 있도록 데이터 코드를 변환하는 비균일 스크램블 기법을 소개하고, 실제 시스템 데이터를 이용하여 스크램블 기법의 성능을 평가한다. 시뮬레이션을 통해 얻은 결과에 따르면 데이터 코드를 변환하여 저장하는 스크램블 기법은 최대 204%의 프로그램 성능 개선 효과를 보인다.

Study of monolithic 3D integrated-circuit consisting of tunneling field-effect transistors (터널링 전계효과 트랜지스터로 구성된 3차원 적층형 집적회로에 대한 연구)

  • Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.682-687
    • /
    • 2022
  • In this paper, the research results on monolithic three-dimensional integrated-circuit (M3DICs) stacked with tunneling field effect transistors (TFETs) are introduced. Unlike metal-oxide-semiconductor field-effect transistors (MOSFETs), TFETs are designed differently from the layout of symmetrical MOSFETs because the source and drain of TFET are asymmetrical. Various monolithic 3D inverter (M3D-INV) structures and layouts are possible due to the asymmetric structure, and among them, a simple inverter structure with the minimum metal layer is proposed. Using the proposed M3D-INV, this M3D logic gates such as NAND and NOR gates by sequentially stacking TFETs are proposed, respectively. The simulation results of voltage transfer characteristics of the proposed M3D logic gates are investigated using mixed-mode simulator of technology computer aided design (TCAD), and the operation of each logic circuit is verified. The cell area for each M3D logic gate is reduced by about 50% compared to one for the two-dimensional planar logic gates.

Analysis for Shielding Effectiveness of EMI Spray Coating Layers in 3D Structure (3차원 구조에서 EMI 스프레이 코팅막의 차폐효과 분석)

  • Hur, Jung;Lee, Won-Hui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.35-39
    • /
    • 2019
  • The shielding effectiveness (SE) of the EMI spray coating film was measured in a three-dimensional structure. The shielding effectiveness was measured by AST D4935 using coaxial type TEM cell. A standard sample of the cylindrical slab is fabricated to measure the shielding effectiveness using the ASTM D4935. At this time, spray coating was performed by bonding a three-dimensional structure with NAND flash memory to a standard sample. In the case of spray coating, it was uniformly coated not only on the horizontal plane but also on the vertical plane of the three-dimensional structure. As a result of measurement, shielding effectiveness of maximum 59 dB was measured in a three-dimensional structure similar to the case without three-dimensional structure. As a result, it was confirmed that the spray coating can be uniformed even in the three-dimensional structure.

Design and Implementation of JPEG Image Display Board Using FFGA (FPGA를 이용한 JPEG Image Display Board 설계 및 구현)

  • Kwon Byong-Heon;Seo Burm-Suk
    • Journal of Digital Contents Society
    • /
    • v.6 no.3
    • /
    • pp.169-174
    • /
    • 2005
  • In this paper we propose efficient design and implementation of JPEG image display board that can display JPEG image on TV. we used NAND Flash Memory to save the compressed JPEG bit stream and video encoder to display the decoded JPEG mage on TV. Also we convert YCbCr to RGB to super impose character on JPEG image. The designed B/D is implemented using FPGA.

  • PDF

An Efficient Index Buffer Management Scheme for a B+ tree on Flash Memory (플래시 메모리상에 B+트리를 위한 효율적인 색인 버퍼 관리 정책)

  • Lee, Hyun-Seob;Joo, Young-Do;Lee, Dong-Ho
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.719-726
    • /
    • 2007
  • Recently, NAND flash memory has been used for a storage device in various mobile computing devices such as MP3 players, mobile phones and laptops because of its shock-resistant, low-power consumption, and none-volatile properties. However, due to the very distinct characteristics of flash memory, disk based systems and applications may result in severe performance degradation when directly adopting them on flash memory storage systems. Especially, when a B-tree is constructed, intensive overwrite operations may be caused by record inserting, deleting, and its reorganizing, This could result in severe performance degradation on NAND flash memory. In this paper, we propose an efficient buffer management scheme, called IBSF, which eliminates redundant index units in the index buffer and then delays the time that the index buffer is filled up. Consequently, IBSF significantly reduces the number of write operations to a flash memory when constructing a B-tree. We also show that IBSF yields a better performance on a flash memory by comparing it to the related technique called BFTL through various experiments.

In-situ Process Monitoring Data from 30-Paired Oxide-Nitride Dielectric Stack Deposition for 3D-NAND Memory Fabrication

  • Min Ho Kim;Hyun Ken Park;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.53-58
    • /
    • 2023
  • The storage capacity of 3D-NAND flash memory has been enhanced by the multi-layer dielectrics. The deposition process has become more challenging due to the tight process margin and the demand for accurate process control. To reduce product costs and ensure successful processes, process diagnosis techniques incorporating artificial intelligence (AI) have been adopted in semiconductor manufacturing. Recently there is a growing interest in process diagnosis, and numerous studies have been conducted in this field. For higher model accuracy, various process and sensor data are required, such as optical emission spectroscopy (OES), quadrupole mass spectrometer (QMS), and equipment control state. Among them, OES is usually used for plasma diagnostic. However, OES data can be distorted by viewport contamination, leading to misunderstandings in plasma diagnosis. This issue is particularly emphasized in multi-dielectric deposition processes, such as oxide and nitride (ON) stack. Thus, it is crucial to understand the potential misunderstandings related to OES data distortion due to viewport contamination. This paper explores the potential for misunderstanding OES data due to data distortion in the ON stack process. It suggests the possibility of excessively evaluating process drift through comparisons with a QMS. This understanding can be utilized to develop diagnostic models and identify the effects of viewport contamination in ON stack processes.

  • PDF