• Title/Summary/Keyword: 3D Measurements

Search Result 1,826, Processing Time 0.026 seconds

A Study on Body Shape for 3D Virtual Body Shape Transformation - Focusing on the Women with age of forties - (3차원 가상바디 변형을 위한 체형연구 - 40대 여성을 대상으로 -)

  • Shin, Ju-Young Annie;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.265-277
    • /
    • 2015
  • The aim of this study was to successfully reflect human body changes on the transformation of the virtual body within 3D virtual fitting spaces. For this purpose, existing problems of shape transformation of the virtual body were analyzed and regression equations which provides useful basic data for transformation of the virtual body that can be applied usefully to the 3D virtual fitting system was developed. Necessary data for the analyses were body measurement and 3D scan data of women with average physical form between the ages of 40 through 49. The reason that we used human body changes of the female subjects in their forties was based on the recognition that fundamental female body changes start to occur from age of forty. Body shapes were largely divided into 3 groups according to obesity which was found to be the biggest factor of shape change. Seven factors were extracted based on factor analysis of 47 body measurement categories and regression equations were created to extract specific measurements for each BMI group based on these seven factors. The major contribution of this paper can be summarized as follows. First, the regression equations to extract specific measurements based on the 7 representative variables remediated existing problem of virtual bodies as it increased the number of body shape transformation areas. Second, the regression equations helped to overcome the problem of current failing to reflecting changes in body cross-section shape based on simple girth measurements based on analysis of cross-section distances.

Reliability of Measurements of Back Vertex Power for Soft Contact Lenses Using an Auto-Lensmeter (자동렌즈미터를 이용한 소프트 콘택트렌즈의 굴절력 측정 방법에 관한 신뢰도)

  • Kim, Kun-Kyu;Lee, Wook-Jin;Lee, Sun-Haeng;Kwak, Ho-Won;Yu, Dong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Purpose: To assess the reliability for measuring the back vertex power of soft contact lenses by dry blotting and wet cell method using an auto-lensmeter. Methods: The soft contact lenses used for measurement were 5 types that were distributed in Korea, and 4 back vertex powers (-1.50D, -3.00D, -6.00D, -9.00D) were used. and repeatability and reproducibility were evaluated by measuring them with an auto-lensmeter by two examiners. Results: Measured powers by dry blotting method were ranged in mean differences from 0.03D to 0.18D for overall lenses, 0.10D to 0.18D for silicone hydrogel lenses, 0.03D to 0.08D for hydrogel lenses. The mean differences between two examiners were less than 0.10D, and the inter-examiner reproducibility was good for dry blotting method. The mean difference between powers determined by wet cell method were 0.09D to 0.69D, the mean differences between two examiners were 0.02D to 0.59D. The reliability of measurements and inter-examiner reproducibility were less than dry blotting method. Conclusions: The reliability of measurements for all materials was better in dry blotting than wet cell method, the re liability of measurements for silicone hydrogel lenses was low in both methods. In clinical practical which requires quick checking of back vertex power using an auto-lensmeter. dry blotting method is thought to be more efficient than wet cell one.

Effect of Fabric Properties used for the Loop Type Decorative Elements on the 3-dimensional Shape

  • Ko, Youngmin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.17 no.3
    • /
    • pp.30-47
    • /
    • 2013
  • In the modern fashion industry, efficiency has been increasing thanks to development of computer graphics, IT technology, and digitalization. Unlike the past when fashion design heavily depended on handwork, digitalization of fashion industry makes fabrication time shorter and enables designers to adopt comprehensive expression, generating high value-added product. The Apparel CAD, an example of the digitalized fashion industry, has been developed from 2D system into a system providing 3D simulation. Digital clothing can be determined as an activity of designers using the tool in order to fabricate pattern and simulate its designed clothes in the virtual space of computer. In this study, physical properties of eight materials, which can be utilized on a par with current fashion trend, have been specified. For more sophisticated investigation, external appearance of the material was investigated by 3D scanning. In order to examine the physical properties of fabric specimens, KES(Kawabata Evaluation System) measurements and other physical property measurements were made. With the results, virtual material and clothes were simulated via CLO 3D, one of 3D apparel CAD systems. Then, virtual fabrics and clothes of similar types were generated and analyzed.

A High-speed Digital Laser Grating Projection System for the Measurement of 3-dimensional Shapes

  • Park, Yoon-Chang;Park, Chul-Geun;Ahn, Seong-Joon;Kang, Moon-Ho;Ahn, Seung-Joon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.251-255
    • /
    • 2009
  • In the non-contact 3-dimensional (3D) shape measurements, the fringe pattern projection method based on the phase-shifting technique has been considered very effective for its high speed and accuracy. The digital fringe projector in particular has great flexibility in generating fringe patterns since the patterns can be controlled easily by the computer program. In this work, we have developed a high-speed digital laser grating projection system using a laser diode and a polygon mirror, and evaluated its performance. It has been demonstrated that all the optical measurements required to find out the profile of a 3D object could be carried out within 31 ms, which confirmed the validity of our 3D measurement system. The result implies the more important fact that the speed in 3D measurement can be enhanced remarkably since, in our novel system, there is no device like a LCD or DMD whose response time limits the measurement speed.

Development of Standard Body Measurement for Elderly Women(II) - Somatotype Classification & Standard Body Measurement - (노년 여성의 표준 신체치수 설정에 관한 연구(제2보) -체형분류와 표준 신체치수-)

  • 이정임;주소령;남윤자;류영실
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.377-386
    • /
    • 2004
  • This report is the second study to develop the standard tables of body measurements to be used for improving the fit of garments and patterns for women aged 60 and older. The purpose of this study is to suggest the new sizing system proper to the women aged 60 and older by classifying their somatotype and developing the standard tables of body measurements for each somatotype. The data are the anthropometric measurements of 329 women aged 60 and older measured in 2001 and the 1997 National Somatometry Survey data. The major contents of this study are as follows. The applicability of KS K 0051 and ISO 3637 sizing systems to the women aged 60 and older was investigated by analyzing the distribution of height and drop index the difference of hipgirth and bustgirth. In this result, we certified the two sizing systems were not so proper to elderly women and the new sizing system proper to them was required. So, we classified the somatotype of the women aged 60 and older to 3 groups, 135cm$\leq$H(height)<145cm, 145cm$\leq$H<155cm, 155cm$\leq$H<165cm by height and classified to 3 groups, -4cm$\leq$D(drop)<16cm, -4cm$\leq$D<4cm, -l6cm$\leq$D<-4cm by drop index, and we suggested more proper sizing system for women aged 60 and older by compounding height and drop groups. We also developed the standard tables of body measurements every bustgirth groups of 9 somatotypes. We expect the standard tables of body measurements to applicate to manufacture clothing for elderly women.

Development of Korean Representative Headforms for the Total Inward Leakage Testing on Filtering Facepiece Respirators

  • Ah Lam Lee;Xin Cui;Hayoung Jung;Hee Eun Kim;Eun Jin Jeon;Hyungjin Na;Eunmi Kim;Heecheon You
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.42-52
    • /
    • 2024
  • Background: The lack of headforms that accurately reflect the head characteristics of Koreans and the demographic composition of the Korean population can lead to inadequate FFR testing and reduced effectiveness of FFRs. Method: Direct measurements of 5,110 individuals and 3D measurements of 2,044 individuals, aged between 9 and 69 years, were sampled from the data pool of Size Korea surveys based on the age and gender ratios of the Korean resident demographics. Seven head dimensions were selected based on the ISO 16976-2, availability of Size Korea measurements, and their relevance to the fit performance of FFRs. A principal component analysis (PCA) was performed using the direct measurements to extract the main factors explaining the head characteristics and then the main factors were standardized and remapped to 3D measurements, creating five size categories representing Korean head shapes. Lastly, representative 3D headforms were constructed by averaging five head shapes for each size category. Results: The study identified two main factors explaining Korean head characteristics by the PCA procedure specified in ISO 16976-2 and developed five representative headforms reflecting the anthropometric features of Korean heads: medium, small, large, short & wide, and long & narrow. Conclusion: This study developed representative headforms tailored to the Korean population for conducting total inward leakage (TIL) tests on filtering facepiece respirators (FFRs). The representative headforms can be used for TIL testing by employing robotic headforms to enhance the performance of FFRs for the Korean target population.

Development of Digital Holographic Microscopy System for Measurements of Particle Velocities in MR Fluids (MR 유체 입자 속도 계측을 위한 디지털 홀로그래피 현미경 시스템의 개발)

  • Chen, He-Peng;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • In this study digital holographic microscopy system for measurements of 3-D velocities of particles in MR fluid is developed. Holograms are recorded using either a CCD camera with a double pulse laser or a high-speed camera with a continuous laser. To process recorded holograms, the correlation coefficient method is used for focal plane determination of particles. To remove noise and improve the quality of holograms and reconstructed images, a Wiener filter is adopted. The two-threshold and image segmentation methods are used for binary image transformation. For particle pairing, the match probability method is adopted. The developed system will be applied to measurements of the characteristics of unsteady 3-D particle velocities in MR fluids through the next stage of this study.

3D Environment Perception using Stereo Infrared Light Sources and a Camera (스테레오 적외선 조명 및 단일카메라를 이용한 3차원 환경인지)

  • Lee, Soo-Yong;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.519-524
    • /
    • 2009
  • This paper describes a new sensor system for 3D environment perception using stereo structured infrared light sources and a camera. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and two projected infrared light sources are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Two successive captures of the image with left and right infrared light projection provide several benefits, which include wider area of depth measurement, higher spatial resolution and the visibility perception.

Comparison of conventional lateral cephalograms with corresponding CBCT radiographs

  • Park, Chang-Seo;Park, Jae-Kyu;Kim, Huijun;Han, Sang-Sun;Jeong, Ho-Gul;Park, Hyok
    • Imaging Science in Dentistry
    • /
    • v.42 no.4
    • /
    • pp.201-205
    • /
    • 2012
  • Purpose: This study was performed to assess the compatibility of cone beam computed tomography (CBCT) synthesized cephalograms with conventional cephalograms, and to find a method for obtaining normative values for three-dimensional (3D) assessments. Materials and Methods: The sample group consisted of 10 adults with normal occlusion and well-balanced faces. They were imaged using conventional and CBCT cephalograms. The CBCT cephalograms were synthesized from the CBCT data using OnDemand 3D software. Twenty-one angular and 12 linear measurements from each imaging modality were compared and analyzed using paired-t test. Results: The linear measurements between the two imaging modalities were not statistically different (p>0.05) except for the U1 to facial plane distance. The angular measurements between the two imaging modalities were not statistically different (p>0.05) with the exception of the gonial angle, ANB difference, and facial convexity. Conclusion: Two-dimensional cephalometric norms could be readily used for 3D quantitative assessment, if corrected for lateral cephalogram distortion.