• Title/Summary/Keyword: 3D Location

Search Result 1,368, Processing Time 0.027 seconds

A Study on Management and Improvement of School Libraries with Viewpoint of Five Laws of Library Science: Focused on D Elementary School Library in Busan (도서관학 5법칙으로 본 학교도서관 운영과 개선방안 - 부산 D초등학교 도서관을 사례로 하여 -)

  • Lee, Hyeonsook;Lee, Yong-Jae
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.1
    • /
    • pp.171-190
    • /
    • 2022
  • This study aims to examine the current status of managing elementary school libraries in Busan and suggest the ways to improve it with the viewpoint of 'the five laws of library science'. The scope of study was set as the elementary school libraries in Busan, and the operation status of 304 elementary school libraries was analyzed. And for in-depth investigation, D elementary school library was examined as a case. The operation status of elementary school libraries in Busan was analyzed with the analysis elements; existence of school library, placement of teacher librarian, library collection, annual use, budget, and library seats for 6 years from 2016 to 2021. As a result, especially the placement rate of full-time teacher librarians was only 10.5%, indicating that the problem of manpower shortage was serious. As case study, the current state of managing D elementary school library was deeply investigated with perspectives of the first law and the third law of library science among Ranganathan's five laws of library science. With the first law, the investigation was divided into the aspects of open-shelf system, library location, library hours, furniture, and staff. With the third law, the investigation was done as the aspects of shelf arrangement, catalog, extended service, book selection. Especially, books with more than 50 copies for the program of reading one book each semester accounted for 4.8% of the total collection, showing the problem of unbalanced collection. As the result of this study, 'expanding the placement of teacher librarians', 'making better reading environment through remodeling', and 'balanced collection development' were suggested as the ways of developing school libraries.

Design and Application of a LonRF Device based Sensor Network for an Ubiquitous Home Network (유비쿼터스 홈네트워크를 위한 LonRF 디바이스 기반의 센서 네트워크 설계 및 응용)

  • Ro Kwang-Hyun;Lee Byung-Bog;Park Ae-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.3
    • /
    • pp.87-94
    • /
    • 2006
  • For realizing an ubiquitous home network(uHome-net), various sensors should be able to be connected to an integrated wire/wireless sensor network. This paper describes an application case of applying LonWorks technology being widely used in control network to wire/wireless sensor network in uHome-net and the design and application of LonRF device that consists of a neuron chip including LonTalk protocol, a 433.92MHz RF transceiver, a sensor, and application programs. As an application example of the LonRF device, the LonRF smart badge that can measure the 3D location of objects in indoor environment and interwork with the uHome-net was developed. LonRF device based home network services were realized on the uHome-net testbed such as indoor positioning service, remote surveillance service and remote metering service were realized. This research shows that LonWorks technology based sensor network could be applicable to the control network in an ubiquitous home network and the LonRF device can be used as a wireless node in various sensor networks.

  • PDF

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.

Robust Depth Measurement Using Dynamic Programming Technique on the Structured-Light Image (구조화 조명 영상에 Dynamic Programming을 사용한 신뢰도 높은 거리 측정 방법)

  • Wang, Shi;Kim, Hyong-Suk;Lin, Chun-Shin;Chen, Hong-Xin;Lin, Hai-Ping
    • Journal of Internet Computing and Services
    • /
    • v.9 no.3
    • /
    • pp.69-77
    • /
    • 2008
  • An algorithm for tracking the trace of structured light is proposed to obtain depth information accurately. The technique is based on the fact that the pixel location of light in an image has a unique association with the object depth. However, sometimes the projected light is dim or invisible due to the absorption and reflection on the surface of the object. A dynamic programming approach is proposed to solve such a problem. In this paper, necessary mathematics for implementing the algorithm is presented and the projected laser light is tracked utilizing a dynamic programming technique. Advantage is that the trace remains integrity while many parts of the laser beam are dim or invisible. Experimental results as well as the 3-D restoration are reported.

  • PDF

Three-Dimensional Finite Element Analysis of Tieback Walls in Sand

  • Lim, Yu-Jin;Briaud, Jean-Louis
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.33-52
    • /
    • 1997
  • A three dimensional nonlinear finite element analysis is used to study the influence of various design decisions for tieback walls. The numerical model simulates the soldier piles and the tendon bonded length of the anchors with beam elements, the unbonded tendon with a spring element, the wood lagging with the shell elements, and the soil with solid 3D nonlinear elements. The soil model used is a modified hyperbolic model with unloading hysteresis. The complete sequence of construction is simulated including the excavation, and the placement and stressing of the anchors. The numerical model is calibrated against a full scale instrumented tieback wall at the National Geotechnical Experimentation Site (NGES) on the Riverside Campus of Texas A&M University. Then a parametric study is conducted. The results give information on the influence of the following factors on the wall behavior : location of the first anchor, length of the tendon unbonded zone, magnitude of the anchor forces, embedment of the soldier piles, stiffness of the wood lagging, and of the piles. The implications in design are discussed.

  • PDF

Capture of Foot Motion for Real-time Virtual Wearing by Stereo Cameras (스테레오 카메라로부터 실시간 가상 착용을 위한 발동작 검출)

  • Jung, Da-Un;Yun, Yong-In;Choi, Jong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1575-1591
    • /
    • 2008
  • In this paper, we propose a new method detecting foot motion capture in order to overlap in realtime foot's 3D virtual model from stereo cameras. In order to overlap foot's virtual model at the same position of the foot, a process of the foot's joint detection to regularly track the foot's joint motion is necessary, and accurate register both foot's virtual model and user's foot in complicated motion is most important problem in this technology. In this paper, we propose a dynamic registration using two types of marker groups. A plane information of the ground handles the relationship between foot's virtual model and user's foot and obtains foot's pose and location. Foot's rotation is predicted by two attached marker groups according to instep of center framework. Consequently, we had implemented our proposed system and estimated the accuracy of the proposed method using various experiments.

  • PDF

SEAMCAT Based Interference Evaluation Tool with 3D Terrain Display (3차원 지형 디스플레이 기능을 갖는 SEAMCAT 기반 전파 간섭 평가 도구)

  • Park, Sang Joon;Jeon, Jun Young;Lim, Chang Heon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.13-20
    • /
    • 2013
  • Currently, SEAMCAT has been widely used as a tool to evaluate the effects of interference among wireless communication systems. In the previous work, we have incorporated the ITU-R P.526 pathloss model to the existing SEAMCAT in order to support the capability of interference evaluation taking into account any specific terrain characteristics. Along with this, we have implemented a terrain display function based on the Google map. However, the two-dimensional Google map based display is not effective in helping users to figure out some terrain features including the elevation variation in a given region. In order to alleviate this difficulty, we have incorporated the three-dimensional terrain display using the API of the Google earth to the existing SEAMCAT and provided the capability of viewing the positions of the associated communication systems, the variation of the carrier intensity and interference intensity in location, shadow region indication, and line-of-sight analysis and presented an example of interference evaluation.

Analysis of Position Accuracy for Underground Facility Using RTK-GPS (RTK-GPS를 이용한 지하시설물의 위치 정확도 분석)

  • 박운용;이종출;정성모
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2003
  • The complicated facilities on the ground have begun to be laid under the ground as increasing emphasis on the beauty of cities due to centralization. But, as the kind of the facilities have been concentrated on the narrow area, accidents occur due to the difficulty of maintenance and the inaccuracy of location information. In this study, first we constructed the field test model to compare with the method of underground probing. So, we could know that the electromagnetic induction method and GPR(Ground Penetration Radar) are useful. It was acquired the position information for the underground facilities using a RTK-GPS. As the result, we have analyzed the accurate position of the underground facility and show the way improving accuracy in detecting and surveying comparing with the traditional surveying method. Also, we hope to contribute the effective maintenance and prevention of disasters to the underground facility as using underground facilities 3D position with Arcview and building the DB of exact depth and underground facilities information system.

Workspace Generation and Interference Optimization Algorithm by Work-type using 3D Model Object in a Construction Project (건설프로젝트의 작업유형별 3차원 작업공간 생성 및 간섭 최적화 방안)

  • Kim, HyeonSeung;Moon, HyounSeok;Kim, ChangHak;Kang, LeenSeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1911-1918
    • /
    • 2014
  • The increase of input resources, such as labor and equipment, in a construction project causes workspace interference between activities and it influences on the productivity and quality of construction activities. To solve this problem, many studies related to the workspace interference have been performed, however they verified the workspace concerning with only the geometric location of activities or generated the shape of workspace by a whole object concept not separated units of detailed operations. It is difficult for project manager to reasonably analyze the workspace conflict, because the size of workspace cannot reflect the characteristics of an activity and input time of a resource. This paper presents a methodology that can generate three-dimensional models in order to optimize the workspace shape and size by considering with the characteristics of each activity and input time of each resource. The suggested method can be used for the active BIM system that optimizes the workspace conflict without additional construction duration and for the searching algorithm of optimized moving path for construction equipment.

Towards UAV-based bridge inspection systems: a review and an application perspective

  • Chan, Brodie;Guan, Hong;Jo, Jun;Blumenstein, Michael
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.283-300
    • /
    • 2015
  • Visual condition inspections remain paramount to assessing the current deterioration status of a bridge and assigning remediation or maintenance tasks so as to ensure the ongoing serviceability of the structure. However, in recent years, there has been an increasing backlog of maintenance activities. Existing research reveals that this is attributable to the labour-intensive, subjective and disruptive nature of the current bridge inspection method. Current processes ultimately require lane closures, traffic guidance schemes and inspection equipment. This not only increases the whole-of-life costs of the bridge, but also increases the risk to the travelling public as issues affecting the structural integrity may go unaddressed. As a tool for bridge condition inspections, Unmanned Aerial Vehicles (UAVs) or, drones, offer considerable potential, allowing a bridge to be visually assessed without the need for inspectors to walk across the deck or utilise under-bridge inspection units. With current inspection processes placing additional strain on the existing bridge maintenance resources, the technology has the potential to significantly reduce the overall inspection costs and disruption caused to the travelling public. In addition to this, the use of automated aerial image capture enables engineers to better understand a situation through the 3D spatial context offered by UAV systems. However, the use of UAV for bridge inspection involves a number of critical issues to be resolved, including stability and accuracy of control, and safety to people. SLAM (Simultaneous Localisation and Mapping) is a technique that could be used by a UAV to build a map of the bridge underneath, while simultaneously determining its location on the constructed map. While there are considerable economic and risk-related benefits created through introducing entirely new ways of inspecting bridges and visualising information, there also remain hindrances to the wider deployment of UAVs. This study is to provide a context for use of UAVs for conducting visual bridge inspections, in addition to addressing the obstacles that are required to be overcome in order for the technology to be integrated into current practice.