• Title/Summary/Keyword: 3D Location

Search Result 1,368, Processing Time 0.031 seconds

Registration-free 3D Point Cloud Data Acquisition Technique for as-is BIM Generation Using Rotating Flat Mirrors

  • Li, Fangxin;Kim, Min-Koo;Li, Heng
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.3-12
    • /
    • 2020
  • Nowadays, as-is BIM generation has been popularly adopted in the architecture, engineering, construction and facility management (AEC/FM) industries. In order to generate a 3D as-is BIM of a structural component, current methods require a registration process that merges different sets of point cloud data obtained from multiple locations, which is time-consuming and registration error-prone. To tackle this limitation, this study proposes a registration-free 3D point cloud data acquisition technique for as-is BIM generation. In this study, small-size mirrors that rotate in both horizontal and vertical direction are used to enable the registration-free data acquisition technique. First, a geometric model that defines the relationship among the mirrors, the laser scanner and the target component is developed. Second, determinations of optimal laser scanner location and mirror location are performed based on the developed geometrical model. To validate the proposed registration-free as-is BIM generation technique, simulation tests are conducted on key construction components including a PC slab and a structural wall. The result demonstrates that the registration-free point cloud data acquisition technique can be applicable in various construction elements including PC elements and structural components for as-is BIM generation.

  • PDF

2D Location Estimation of a Magnetized Tip Using Arrayed GMR Sensors (GMR센서 배열을 이용한 자석팁의 2D 위치 추정)

  • Lee, S.C.;Kim, J.K.;Ahn, J.H.;Kim, H.Y.
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.395-401
    • /
    • 2019
  • This paper proposes a method for estimating the location of a magnetized tip that is inside a non-transparent space or body by using arrayed giant magnetoresistance (GMR) sensors. In general, an object located in such an opaque space can be detected using X-rays, magnetic fields, ultra-sonic sensors, etc., depending on its characteristics. X-ray is mostly used for medical purposes but frequent exposure to it could cause harm to patients as well as doctors. In this study, how well a GMR sensor is applicable instead of an X-ray is investigated. The sensor's voltage output is experimentally fitted to distance with a relationship of 3rd degree polynomial. To detect a small magnetized tip with 900 Oe inside a human body, a 2×2 arrayed GMR sensor and a location estimation algorithm based on information acquired from four sensors is developed. Evaluation tests show that the suggested method is applicable to limited cases with a distance less than 33-55 mm, and the location of a magnet tip is estimated relatively well with an error less than 1.5 mm.

Implementation of 3D Moving Target-Tracking System based on MSE and BPEJTC Algorithms

  • Ko, Jung-Hwan;Lee, Maeng-Ho;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, a new stereo 3D moving-target tracking system using the MSE (mean square error) and BPEJTC (binary phase extraction joint transform correlator) algorithms is proposed. A moving target is extracted from the sequential input stereo image by applying a region-based MSE algorithm following which, the location coordinates of a moving target in each frame are obtained through correlation between the extracted target image and the input stereo image by using the BPEJTC algorithm. Through several experiments performed with 20 frames of the stereo image pair with $640{\times}480$ pixels, we confirmed that the proposed system is capable of tracking a moving target at a relatively low error ratio of 1.29 % on average at real time.

The Development of a Haptic Interface for Interacting with BIM Elements in Mixed Reality

  • Cho, Jaehong;Kim, Sehun;Kim, Namyoung;Kim, Sungpyo;Park, Chaehyeon;Lim, Jiseon;Kang, Sanghyeok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1179-1186
    • /
    • 2022
  • Building Information Modeling (BIM) is widely used to efficiently share, utilize and manage information generated in every phase of a construction project. Recently, mixed reality (MR) technologies have been introduced to more effectively utilize BIM elements. This study deals with the haptic interactions between humans and BIM elements in MR to improve BIM usability. As the first step in interacting with virtual objects in mixed reality, we challenged moving a virtual object to the desired location using finger-pointing. This paper presents the procedure of developing a haptic interface system where users can interact with a BIM object to move it to the desired location in MR. The interface system consists of an MR-based head-mounted display (HMD) and a mobile application developed using Unity 3D. This study defined two segments to compute the scale factor and rotation angle of the virtual object to be moved. As a result of testing a cuboid, the user can successfully move it to the desired location. The developed MR-based haptic interface can be used for aligning BIM elements overlaid in the real world at the construction site.

  • PDF

해외연구소의 효과적 운영에 대한 기존 연구 및 사례를 통한 탐색적 연구

  • 김영배;이대우
    • Proceedings of the Technology Innovation Conference
    • /
    • 1996.12a
    • /
    • pp.27-62
    • /
    • 1996
  • As an exploratory attempt, this study examines the patterns of global R&D activities of industrial firms, focusing on the management of overseas R&D centers in terms of their location, primary missions, management style, organizational structure and communication and global human resource management system Based on a review of existing studies mainly undertaken in advanced countries and cases of foreign MNCs, several hypothetical relationships are postulated : 1) There appears a strong relationship between the purpose and location of R&D activities : 2) Different levels of global management and technological capability lead to different types of overseas R&D organizations : 3) The relationship between autonomy of overseas R&D organizations and their R&D performance will be moderated by organization size, development time pressure, and a need for internal efficiency : 4) Frequent communication between the headquarter and overseas R&D organizations will increase R&D performance 5) Mutual exchange of R&D professionals between the headquarter and overseas R&D organizations will be positively related with R&B performance. In addiction, this study explores the current state of global R&D activities of selective firms in Korea, based on ie-depth interviews, and analyzes the sources of problems in their global R&D management. Finally, theoretical and managerial implications of this study are discussed and future research directions are proposed.

  • PDF

Using a Spatial Databases for Indoor Location Based Services (실내위치기반서비스를 위한 공간데이터베이스 활용기법)

  • Cho, Yong-Joo;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.157-166
    • /
    • 2009
  • There is a growing interest in ubiquitous-related research and applications. Among them, GPS-based LBS have been developed and used actively. Recently, with the increase of large size buildings and disastrous events, indoor spaces are getting attention and related research activities are being carried out. Core technologies regarding indoor applications may include 3D indoor data modeling and localization sensor techniques that can integrate with indoor data. However, these technologies have not been standardized and established enough to be applied to indoor implementation. Thus, in this paper, we propose a method to build a relatively simple 3D indoor data modeling technique that can be applied to indoor location based applications. The proposed model takes the form of 2D-based multi-layered structure and has capability for 2D and 3D visualization. We tested three prototype applications using the proposed model; CA(cellular automata)-based 3D evacuation simulation, network-based routing, and indoor moving objects tracking using a stereo camera.

  • PDF

Altitude and Heading Correction of 3D Pedestrian Inertial Navigation

  • Cho, Seong Yun;Lee, Jae Hong;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.189-196
    • /
    • 2021
  • In this paper, we propose techniques to correct the altitude error and heading error of 3D Pedestrian Inertial Navigation (PIN). When a PIN is used to estimate the location of a pedestrian only with an Inetrial Measurement Unit (IMU) without infrastructure, there is a problem in that the location error gradually increases due to the limitation of the observability of the filter. To solve this problem without additional sensors, we propose two techniques in this paper. First, stair walking is recognized in consideration of the altitude difference that may occur during one step. If it is recognized as stair walking, only Zero-velocity UPdaTe (ZUPT) is performed, and if it is recognized as level walking, ZUPT + Altitude Damping (AD) is performed together to correct the altitude error. Second, the straight-line movement direction is calculated through the difference of the estimated position, and the heading error is corrected by matching this information with the link information of the digital map. By applying these techniques, it is verified through real tests that accurate three-dimensional location information of pedestrians can be estimated without infrastructure.

Path Prediction-based Dynamic Data Sharing in Network Virtual Environment (네트워크 가상환경에서 경로예측에 의한 동적 데이터 공유)

  • Song, Sun-Hee;Ra, Sang-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.956-963
    • /
    • 2006
  • This research studies multi participant consistency and dynamic data shared through 3D scenes in virtual network environments. In a distributed virtual environment of client-server structure, consistency is maintained by the static information exchange; as jerks occur by packet delay when updating messages of dynamic data exchanges are broadcasted frequence, the network bottleneck is reduced by predicting the movement path by using the Dead-reckoning algorithm. In Dynamic data path prediction, the tests the location prediction error between Dead-reckoning convergence interval and error of prediction and actual condition one time above threshold it interpolates a previously location. The shared dynamic data of the 3D virtual environment is implementation using the VRML EAI.

Optimal evacuation route guidance system using recreational forest 3D scan data (휴양림 3D 스캔 데이터를 통한 최적 대피로 안내 시스템)

  • Jung, Sanghun;Gwon, Eunhye;Son, Hoon;Kang, Soyoung;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.258-259
    • /
    • 2021
  • Forest lodge are divided into forest resources, auxiliary facilities, and users, and are constantly being used along with well-being culture. In addition, attention to the safety of users is also required, and this study aims to study how users evacuate within a short time (golden time) in situations of natural disasters that may occur in forests. In order to search for the current location of the user and find the best evacuation route, 3D scans of the entire forest lodge(forest resources, auxiliary facilities, etc.) are performed, and the optimal trajectory to the evacuation site is found through recognition of the current location. It is believed that it is possible to provide a quick evacuation guide through a mobile device with gps.

  • PDF

UWB WBAN Receiver for Real Time Location System (위치 인식이 가능한 WBAN 용 UWB 수신기)

  • Ha, Jong Ok;Park, Myung Chul;Jung, Seung Hwan;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.98-104
    • /
    • 2013
  • This paper presents a WBAN UWB receiver circuit for RTLS(real time location system) and wireless data communication. The UWB receiver is designed to OOK modulation for energy detection. The UWB receiver is designed for sub-sampling techniques using 4bit ADC and DLL.The proposed UWB receiver is designed in $0.18{\mu}m$ CMOS and consumes 61mA with a 1.8V supply voltage. The UWB receiver achieves a sensitivity of -85.7 dBm, a RF front-end gain of 42.1 dB, a noise figure of 3.88 dB and maximum sensing range of 4 meter.