• Title/Summary/Keyword: 3D Graphics Visualization

Search Result 106, Processing Time 0.023 seconds

Development of Interactive 3D Volume Visualization Techniques Using Contour Trees (컨투어 트리를 이용한 삼차원 볼륨 영상의 대화형 시각화 기법 개발)

  • Sohn, Bong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.67-76
    • /
    • 2011
  • This paper describes the development of interactive visualization techniques and a program that allow us to visualize the structure of the volume data and interactively select and visualize the isosurface components using contour tree. The main characteristic of this technique is to provide an algorithm that draws the contour tree in 2D plane in a way that users easily understand the tree, and to provide an algorithm that can efficiently extract an isosurface component utilizing GPU's parallel architecture. The main characteristic of the program we developed through implementing the algorithms is to provide us with an interactive user interface based on the contour tree for extracting an isosurface component and visualization that integrates with previous isosurface and volume rendering techniques. To show the excelland vof our methods, we applied 3D biomedical volume data to our algorithms. The results show that we could interactively select the isosurface components that represent a polypeptide chain, a ventricle and a femur respectively using the user interface based on our contour tree layout method, and extract the isosurface components with 3x-4x higher speed compared to previous methods.

Integral Imaging Pickup Method of Bio-Medical Data using GPU and Octree (GPU와 옥트리를 이용한 바이오 메디컬 데이터의 집적 영상 픽업 기법)

  • Jang, Young-Hee;Park, Chan;Jung, Ji-Sung;Park, Jae-Hyeung;Kim, Nam;Ha, Jung-Sung;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • Recently, 3D stereoscopic display such as 3D stereoscopic cinemas and 3D stereoscopic TV is getting a lot of interest. In general, a stereo image can be used in 3D stereoscopic display. In other hands, for 3D auto stereoscopic display, the elemental images should be generated through visualization from every camera in a lens array. Since a lens array consists of several cameras, it takes a lot of time to generate the elemental images with respect to 3D virtual space, specially, if a large bio-medical volume data is in the 3D virtual space, it will take more time. In order to improve the problem, in this paper, we construct an octree for a given bio-medical volume data and then propose a method to generate the elemental images through efficient rendering of the Octree data using GPU. Experimental results show that the proposed method can obtain more improvement comparable than conventional one, but the development of more efficient method is required.

Component Specification of Physical Measurement Units in Web3D (웹3D에서의 물리적 측정 단위 컴포넌트 명세)

  • Kim, Su-Hyun;Lee, Myeong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.454-458
    • /
    • 2009
  • The technology of virtual environments has been developed with better-quality appearance on a computer display in mind, but without consideration for objects' precise measurements in physical units. With the increased application of computer graphics in a variety of areas, there is a need for precise measurement functionality in addition to visualization. This paper describes the definition of physical properties using measurement units for X3D based virtual objects, to provide their precise physical information in virtual environments. To this end, we have included the physical property node in the X3D specification. The physical measurement units, such as length, mass, time, temperature, etc., are based on SI units (International System of Units).

Web-based 3D Object Retrieval from User-drawn Sketch Query (스케치를 이용한 웹 환경에서의 3차원 모델 검색)

  • Song, Jonghun;Ju, Jae Ho;Yoon, Sang Min
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.838-846
    • /
    • 2014
  • Three-dimensional (3D) object retrieval from user-drawn sketch queries is one of the important research issues in the areas of pattern recognition and computer graphics for simulation, visualization, and Computer Aided Design. The performance of content-based 3D object retrieval system depends on the availability of effective descriptors and similarity measures for this kind of data. In this paper, we present a sketch-based 3D object retrieval system by extracting a hybrid edge descriptor which is robust against rotation and translation. The experimental results which are based on HTML5 and WebGL show that proposed sketch-based 3D object retrieval method is very efficient to search and order the 3D objects according to user's intention.

Managing and Modeling Strategy of Geo-features in Web-based 3D GIS

  • Kim, Kyong-Ho;Choe, Seung-Keol;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.75-79
    • /
    • 1999
  • Geo-features play a key role in object-oriented or feature-based geo-processing system. So the strategy for how-to-model and how-to-manage the geo-features builds the main architecture of the entire system and also supports the efficiency and functionality of the system. Unlike the conventional 2D geo-processing system, geo-features in 3B GIS have lots to be considered to model regarding the efficient manipulation and analysis and visualization. When the system is running on the Web, it should also be considered that how to leverage the level of detail and the level of automation of modeling in addition to the support for client side data interoperability. We built a set of 3D geo-features, and each geo-feature contains a set of aspatial data and 3D geo-primitives. The 3D geo-primitives contain the fundamental modeling data such as the height of building and the burial depth of gas pipeline. We separated the additional modeling data on the geometry and appearance of the model from the fundamental modeling data to make the table in database more concise and to allow the users more freedom to represent the geo-object. To get the users to build and exchange their own data, we devised a file format called VGFF 2.0 which stands for Virtual GIS File Format. It is to describe the three dimensional geo-information in XML(eXtensible Markup Language). The DTD(Document Type Definition) of VGFF 2.0 is parsed using the DOM(Document Object Model). We also developed the authoring tools for. users can make their own 3D geo-features and model and save the data to VGFF 2.0 format. We are now expecting the VGFF 2.0 evolve to the 3D version of SVG(Scalable Vector Graphics) especially for 3D GIS on the Web.

  • PDF

Managing Scheme for 3-dimensional Geo-features using XML

  • Kim, Kyong-Ho;Choe, Seung-Keol;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.47-51
    • /
    • 1999
  • Geo-features play a key role in object-oriented or feature-based geo-processing system. So the strategy for how-to-model and how-to-manage the geo-features builds the main architecture of the entire system and also supports the efficiency and functionality of the system. Unlike the conventional 2D geo-processing system, geo-features in 3D GIS have lots to be considered to model regarding the efficient manipulation and analysis and visualization. When the system is running on the Web, it should also be considered that how to leverage the level of detail and the level of automation of modeling in addition to the support for client side data interoperability. We built a set of 3D geo-features, and each geo-feature contains a set of aspatial data and 3D geo-primitives. The 3D geo-primitives contain the fundamental modeling data such as the height of building and the burial depth of gas pipeline. We separated the additional modeling data on the geometry and appearance of the model from the fundamental modeling data to make the table in database more concise and to allow the users more freedom to represent the geo-object. To get the users to build and exchange their own data, we devised a fie format called VGFF 2.0 which stands for Virtual GIS File Format. It is to describe the three dimensional geo-information in XML(extensible Markup Language). The DTD(Document Type Definition) of VGFF 2.0 is parsed using the DOM(Document Object Model). We also developed the authoring tools for users can make their own 3D geo-features and model and save the data to VGFF 2.0 format. We are now expecting the VGFF 2.0 evolve to the 3D version of SVG(Scalable Vector Graphics) especially for 3D GIS on the Web.

  • PDF

Virtual Domino: Interactive Physics Simulation and Experience

  • Shahab, Qonita M.;Kwon, Yong-Moo;Ko, Hee-Dong
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.954-959
    • /
    • 2006
  • Virtual Reality simulation enables immersive 3D experience of a Virtual Environment. A simulation-based VE can be used to map real world phenomena into virtual experience. This research studies on the use of Newton's physics law to demonstrate the effects of forces upon object's falling movement, and their effects towards other fallible objects. A reconfigurable simulation enables users to reconfigure the parameters of the objects involved in the simulation, so that they can see different effects from the different configurations, such as force magnitude and distance between objects. This concept is suitable for a classroom learning of physics law. Preliminary implementation is done on a PC with a joystick for 4DOF movement. The graphics is implemented by SGI OpenGL Performer. A middleware called NAVERLib that consists of Performer's modules for easy XML-based configuration is used for management of visualization, network and devices connection, and where the engine of this domino simulation is attached.

  • PDF

Developing Mathematics Creativity with Spreadsheets

  • Deane Arganbright
    • Research in Mathematical Education
    • /
    • v.9 no.3 s.23
    • /
    • pp.187-201
    • /
    • 2005
  • The spreadsheet Microsoft Excel is the most widely used mathematical tool in today's workplace. Moreover, it is also an outstanding means for developing a surprisingly wide range of creative and innovative educational uses within such areas as mathematical modeling, visualization, and instruction. The spreadsheet's format provides us with a tool that closely parallels the way in which we naturally carry out problem solving, while the spreadsheet creation process itself illuminates the underlying mathematical concepts. In addition, the spreadsheet's visual layout allows us to introduce a broad variety of challenging and interesting topics, and to design creative demonstrations through eye-catching animated graphics. The material presented comes from actual classroom mathematics teaching experience in both industrially advanced and developing nations. A series of highly visual interactive illustrations from mathematics, the natural and social sciences, computing, engineering, and the arts provide a number of usable examples. The material discussed is applicable at diverse levels, ranging from schools and universities through adult education and in-service teacher development programs.

  • PDF

Progressive occupancy network for 3D reconstruction (3차원 형상 복원을 위한 점진적 점유 예측 네트워크)

  • Kim, Yonggyu;Kim, Duksu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.65-74
    • /
    • 2021
  • 3D reconstruction means that reconstructing the 3D shape of the object in an image and a video. We proposed a progressive occupancy network architecture that can recover not only the overall shape of the object but also the local details. Unlike the original occupancy network, which uses a feature vector embedding information of the whole image, we extract and utilize the different levels of image features depending on the receptive field size. We also propose a novel network architecture that applies the image features sequentially to the decoder blocks in the decoder and improves the quality of the reconstructed 3D shape progressively. In addition, we design a novel decoder block structure that combines the different levels of image features properly and uses them for updating the input point feature. We trained our progressive occupancy network with ShapeNet. We compare its representation power with two prior methods, including prior occupancy network(ONet) and the recent work(DISN) that used different levels of image features like ours. From the perspective of evaluation metrics, our network shows better performance than ONet for all the metrics, and it achieved a little better or a compatible score with DISN. For visualization results, we found that our method successfully reconstructs the local details that ONet misses. Also, compare with DISN that fails to reconstruct the thin parts or occluded parts of the object, our progressive occupancy network successfully catches the parts. These results validate the usefulness of the proposed network architecture.

AUTOMATED HAZARD IDENTIFICATION FRAMEWORK FOR THE PROACTIVE CONSIDERATION OF CONSTRUCTION SAFETY

  • JunHyuk Kwon;Byungil Kim;SangHyun Lee;Hyoungkwan Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.60-65
    • /
    • 2013
  • Introducing the concept of construction safety in the design/engineering phase can improve the efficiency and effectiveness of safety management on construction sites. In this sense, further improvements for safety can be made in the design/engineering phase through the development of (1) an automated hazard identification process that is little dependent on user knowledge, (2) an automated construction schedule generation to accommodate varying hazard information over time, and (3) a visual representation of the results that is easy to understand. In this paper, we formulate an automated hazard identification framework for construction safety by extracting hazard information from related regulations to eliminate human interventions, and by utilizing a visualization technique in order to enhance users' understanding on hazard information. First, the hazard information is automatically extracted from textual safety and health regulations (i.e., Occupational Safety Health Administration (OSHA) Standards) by using natural language processing (NLP) techniques without users' interpretations. Next, scheduling and sequencing of the construction activities are automatically generated with regard to the 3D building model. Then, the extracted hazard information is integrated into the geometry data of construction elements in the industry foundation class (IFC) building model using a conformity-checking algorithm within the open source 3D computer graphics software. Preliminary results demonstrate that this approach is advantageous in that it can be used in the design/engineering phases of construction without the manual interpretation of safety experts, facilitating the designers' and engineers' proactive consideration for improving safety management.

  • PDF