DOI QR코드

DOI QR Code

Integral Imaging Pickup Method of Bio-Medical Data using GPU and Octree

GPU와 옥트리를 이용한 바이오 메디컬 데이터의 집적 영상 픽업 기법

  • 장영희 (충북대학교 정보산업공학과) ;
  • 박찬 (충북대학교 정보산업공학과) ;
  • 정지성 (충북대학교 정보산업공학과) ;
  • 박재형 (충북대학교 전기전자컴퓨터공학부) ;
  • 김남 (충북대학교 전기전자컴퓨터공학부) ;
  • 하종성 (우석대학교 게임콘텐츠학과) ;
  • 류관희 (충북대학교 컴퓨터교육과 및 정보산업공학과)
  • Received : 2010.01.25
  • Accepted : 2010.06.15
  • Published : 2010.06.28

Abstract

Recently, 3D stereoscopic display such as 3D stereoscopic cinemas and 3D stereoscopic TV is getting a lot of interest. In general, a stereo image can be used in 3D stereoscopic display. In other hands, for 3D auto stereoscopic display, the elemental images should be generated through visualization from every camera in a lens array. Since a lens array consists of several cameras, it takes a lot of time to generate the elemental images with respect to 3D virtual space, specially, if a large bio-medical volume data is in the 3D virtual space, it will take more time. In order to improve the problem, in this paper, we construct an octree for a given bio-medical volume data and then propose a method to generate the elemental images through efficient rendering of the Octree data using GPU. Experimental results show that the proposed method can obtain more improvement comparable than conventional one, but the development of more efficient method is required.

최근 들어, 3D 입체 영화와 TV 등 3차원 입체 영상 디스플레이에 대한 관심이 매우 높다. 안경을 끼는 불편함을 해결하기 만들어진 무안경식 3차원 입체 영상 디스플레이를 위해서는 렌즈 어레이 카메라로부터 만들어지는 기초영상(elemental images)을 생성해야 한다. 렌즈 어레이에 여러 카메라가 배치되므로 주어진 3차원 가상공간에 대해 기초영상을 생성하는데 많은 시간이 소요되며, 특히 고용량의 바이오메디컬 자료에 대해서는 더 많은 시간이 소요된다. 본 논문에서는 이러한 문제를 좀더 효율적으로 개선하기 위해 주어진 자료의 효율적 렌더링을 위해 옥트리(Octree)를 구성한 후, GPU(graphics processor units)를 이용하여 렌더링하는 기법을 제시한다. 실험 결과, 제시된 기법이 기존 방법과 비교하여 많은 개선이 있었지만 아직도 더 효율적인 기법의 개발이 요구된다.

Keywords

References

  1. G. Lippmann, “La photographie integrale,” C.R Academic Science. Vol.146, pp.446-451, 1908.
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-Time Pickup Method for a Three-Dimensional Image based on Integral Photography,” Applied Optics, Vol.36, pp.1598-1603(1887). https://doi.org/10.1364/AO.36.001598
  3. S. W. Min, “Enhanced Image Mapping Algorithm for Computer-Generated Integral Imaging System,” Japanese Journal of Applied Physics, Vol.45, No.28, pp.L744-L747, 2006. https://doi.org/10.1143/JJAP.45.L744
  4. Kaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, and Daniel Weiskopf, Real-Time Volume Graphics, K. Peters, Ltd., 2006.
  5. Jang-Il Ser, “A Study on the Properties of an Elemental Image depending on the Shape of Elemental Lens and the pick-up Method in the Integral Imaging,” Journal of Telecommunication and information, Vol.10, pp.33-39, 2006.
  6. S. W. Min, “Three-dimensional Image Processing using Integral Imaging Method,” Optical Society of Korea summer Meeting 2005(7.14-15, 500).
  7. J. Y. Son, Vladmir V. Saveljev, J. S. Kim, Sung-Sik, and Bahram Javidi, “Viewing Zones in Three-dimensional Imaging Systems based on Lenticular, Parallax-barrier, and Microlens-array Plates,” Applied Optics, Vol.43, pp.4985-4992, 2004. https://doi.org/10.1364/AO.43.004985
  8. J. I. Ser and S. H. Shin, “Elemental Image Resizing and the Analysis of the Reconstructed Three dimensional Image in the Integral Imaging System,” Journal of Korean Optics, Vol.16, No.3, pp.225-233, 2005(6). https://doi.org/10.3807/KJOP.2005.16.3.225
  9. Y. H. Jang, C. Park, J. H. Park, N. Kim, K. H. Yoo, “Parallelization for Integral Imaging Pickup," ICCC 2008, Vol.6 No.2, pp.63-64, 2008(12).
  10. Y. H. Jang, C. Park, J. H. Park, N. Kim, and K. H. Yoo, "Parallel Processing for Integral Imaging Pickup using Mutliple Threads,” International Journal of Contents, Vol.5, No 4, pp.30-34, 2009. https://doi.org/10.5392/IJoC.2009.5.4.030
  11. Y. H. Jang, C. Park, H. J. Lee, D. O. Seong, J. H. Park, N. Kim, J. S. Yoo, and K. H. Yoo, “An Improved Method for Integral Imaging Pickup of Bio-Medical Data using GPU,” Korea Computer Graphics Society, pp.89-91, 2009(10).
  12. http://www.opengl.org.
  13. Fernado, GPU Gems, Addison Wesley. 2004.

Cited by

  1. High speed image space parallel processing for computer-generated integral imaging system vol.20, pp.2, 2012, https://doi.org/10.1364/OE.20.000732
  2. Real-time 3D display system based on computer-generated integral imaging technique using enhanced ISPP for hexagonal lens array vol.52, pp.34, 2013, https://doi.org/10.1364/AO.52.008411
  3. Active integral imaging system based on multiple structured light method vol.23, pp.21, 2015, https://doi.org/10.1364/OE.23.027094
  4. P-82: Refocusing Algorithm in Integral Imaging Display with Tunable Central Depth Plane vol.47, pp.1, 2016, https://doi.org/10.1002/sdtp.10969
  5. 19-1: Planar Parallax Based Camera Array Calibration Method for Integral Imaging Three-dimensional Information Acquirement vol.47, pp.1, 2016, https://doi.org/10.1002/sdtp.10641