• Title/Summary/Keyword: 3D Finite Element Analysis (FEA)

Search Result 172, Processing Time 0.025 seconds

Study on the Sheet Metal Forming of the Brake Chamber Head using the Finite Element Analysis (유한요소해석을 이용한 브레이크 챔버 헤드 판재 성형에 관한 연구)

  • Lee, S.I.;Choi, D.H.;Lee, J.W.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • In this study, the sheet metal forming process of the brake chamber head, which had a complex shape compared to the conventional head part, was investigated using finite element (FE) analysis. In order to prevent the forming failures such as necking and fracture, the multi-stage forming process was introduced. The forming process consisted of three steps: (1) first drawing, (2) second drawing, (3) final forming. Experimental and FE simulated results of the brake chamber head were compared, and the results showed that the required characteristics of the straightness and the wall thickness at each location were satisfied.

Three-dimensional effective properties of layered composites with imperfect interfaces

  • Sertse, Hamsasew;Yu, Wenbin
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.639-650
    • /
    • 2017
  • The objective of this paper is to obtain three-dimensional (3D) effective properties for layered composites with imperfect interfaces using mechanics of structure genome. The imperfect interface is modeled using linear traction-displacement model that allows small infinitesimal displacement jump across the interface. The predictions obtained from the current analysis are compared with the 3D finite element analysis (FEA). In this study, it is found that the present model shows excellent agreement with the results obtained using 3D FEA by employing periodic boundary conditions. The prediction also reveals that in-plane longitudinal and shear moduli, and all Poisson's ratios are observed to be not affected by the interfacial stiffness while the predictions of transverse longitudinal and shear moduli are significantly influenced by interfacial stiffness.

3-D Finite Element Stress Analysis for Fatigue Design and Evaluation;A Parametric Study of MOV(Motor Operated Valve) (피로설계 및 평가를 위한 3차원 유한요소 응력해석에 관한 고찰;모터구동밸브를 이용한 사례연구)

  • Kim, Hyeong-Keun;Lee, Sang-Min;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.142-147
    • /
    • 2004
  • In this paper, a new procedure is proposed to accomplish the primary plus secondary stress(P+Q) at the 'structural element' instead of 'transition element'. For the P+Q evaluation, the calculated stresses by FEA are linearized along a stress classification line to extract the stress category, then the stress intensity is calculated to compare with the $3S_{m}$ limit. Also, in this paper, the 'design by analysis' criteria, adopted fundamental concepts and a new approach to calculate $K_{e}$ factors are explained. The new procedure combined with 3-D FEA has been applied to motor operated valve in order to the over conservatism and the rack of margin. The evaluation results show a good applicability and can be utilized for fatigue life evaluation by using P+Q.

  • PDF

Shock-Resistance Responses of Frigate Equipments by Underwater Explosion

  • Kim, Hyunwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.161-167
    • /
    • 2022
  • Three-dimensional finite element analysis (3D-FEA) models have been used to evaluate the shock-resistance responses of various equipments, including armaments mounted on a warship caused by underwater explosion (UNDEX). This paper aims to check the possibility of using one-dimensional (1D) FEA models for the shock-resistance responses. A frigate was chosen for the evaluation of the shock-resistance responses by the UNDEX. The frigate was divided into the thirteen discrete segments along the length of the ship. The 1D Timoshenko beam elements were used to model the frigate. The explosive charge mass and the stand-off distance were determined based on the ship length and the keel shock factor (KSF), respectively. The UNDEX pressure fields were generated using the Geers-Hunter doubly asymptotic model. The pseudo-velocity shock response spectrum (PVSS) for the 1D-FEA model (1D-PVSS) was calculated using the acceleration history at a concerned equipment position where the digital recursive filtering algorithm was used. The 1D-PVSS was compared with the 3D-PVSS that was taken from a reference, and a relatively good agreement was found. In addition, the 1D-PVSS was compared with the design criteria specified by the German Federal Armed forces, which is called the BV043. The 1D-PVSS was proven to be relatively reasonable, reducing the computing cost dramatically.

Development of Virtual Prototype for Labeling: Unit on the Automatic Battery Manufacturing Line (건전지 자동화 조립라인의 라벨링부의 Virtual Prototype 개발)

  • 정상화;차경래;김현욱;신병수;나윤철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.357-362
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. In this thesis, dynamic characteristics of the steel can labeling machine on the automatic cell assembly line are studied. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed for each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Therefore, Virtual Engineering of the steel can labeling machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF

A Study on Effects of EGCG and Design Parameter for Drug-Eluting Biodegradable Polymer Stents (약물-용출 생분해성 고분자 스텐트를 위한 EGCG와 디자인 파라미터의 영향에 대한 연구)

  • Jung, T.G.;Lee, J.H.;Lee, J.J.;Hyon, S.H.;Han, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.111-116
    • /
    • 2013
  • Finite element analysis(FEA) has been extensively applied in the analyses of biomechanical properties of stents. Geometrically, a closed-cell stent is an assembly of a number of repeated unit cells and exhibits periodicity in both longitudinal and circumferential directions. This study concentrates on various parameters of the FEA models for the analysis of drug-eluting biodegradable polymeric stents for application to the treatment of coronary artery disease. In order to determine the mechanical characteristics of biodegradable polymeric stents, FEA was used to model two different types of stents: tubular stents(TS) and helicoidal stents(HS). For this modeling, epigallocatechin-3-O-gallate (EGCG)-eluting poly[(L-lactide-co-${\varepsilon}$-caprolactone), PLCL] (E-PLCL) was chosen as drug-eluting stent materials. E-PLCL was prepared by blending PLCL with 5% EGCG as previously described. In addition, the effects of EGCG blending on the mechanical properties of PLCL were investigated for both types of stent models. EGCG did not affect tensile strength at break, but significantly increased elastic modulus of PLCL. It is suggested that FEA is a cost-effective method to improve the design of drug-eluting biodegradable polymeric stents.

Design of High Temperature Superconducting Magnet with Magnetic Material (자성체를 포함하는 고온초전도 마그네트의 설계)

  • Jo, Young-Sik;Kwon, Young-Kil;Kim, Young-Kyoun;Lee, Geun-Ho;Hong, Jung-Pyo;Ryu, Kang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.367-373
    • /
    • 2001
  • This paper presents racetrack High Temperature Superconducting (HTS) magnet with iron plates to achieve the maximum current-carrying capacity and the simple shape that can easily be wound and jointed. On the basis of the magnetic field analysis using Biot-Savart's law and 3 Dimensional Finite Element Analysis (3D FEA), this study is focused on the function of iron plates, which is to obtain smaller B${\perp}$, and stress and strain condition of Ag-sheathed Bi-2223 37-filament HTS tapes are considered. Moreover, the measured performance of the magnet with iron plates improved by 50% on the basis of initial magnet.

  • PDF

A Study on Welding Distortion of GTA Circular Type Lap Joint in STS304L Thin Plate (STS304L 박판 원형 겹치기 GTA 용접부의 용접 변형 예측에 관한 연구)

  • Kim, Il-Ho;Kim, Ha-Geun;Shin, Sang-Beom;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.57-63
    • /
    • 2012
  • The purpose of this study is to evaluate the welding distortion of the circular type lap joint in STS304L of 0.7mm thickness by using FEA. In order to do it, a heat input model for GTA welding process with non-consumable electrode was established through comparing the molten pool shapes and temperature distributions obtained by both FEA and experiment. With the heat input model, the welding distortion of the circular type lap joint was evaluated by 3-D FEA. From FEA results, it was found that 3-D FEA with proper heat input model can be used for the evaluation of the excessive distortion of the circular type lap joint of STS304L thin plate. In addition, the root cause of the excessive distortion in the weld was also identified as the excessive compressive residual stress in the tangential direction of the weld.

A Study on the Analytical Model of Shear Wall Considering the Current Status of Structural Design (구조설계실무 현황을 고려한 전단벽 해석모형에 관한 고찰)

  • Jung, Sung-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.3-10
    • /
    • 2018
  • While computer environments have been dramatically developed in recent years, as the building structures become larger, the structural analysis models are also becoming more complex. So there is still a need to model one shear wall with one finite element. From the viewpoint of the concept of FEA, if one shear wall is modeled by one finite element, the result of analysis is not likely accurate. Shear wall may be modelled with various finite elements. Among them, considering the displacement compatibility condition with the beam element connected to the shear wall, plane stress element with in-plane rotational stiffness is preferred. Therefore, in order to analyze one shear wall with one finite element accurately, it is necessary to evaluate finite elements developed for the shear wall analysis and to develop various plane stress elements with rotational stiffness continuously. According to the above mentioned need, in this study, the theory about a plane stress element using hierarchical interpolation equation is reviewed and stiffness matrix is derived. And then, a computer program using this theory is developed. Developed computer program is used for numerical experiments to evaluate the analysis results using commercial programs such as SAP2000, ETABS, PERFORM-3D and MIDAS. Finally, the deflection equation of a cantilever beam with narrow rectangular section and bent by an end load P is derived according to the elasticity theory, and it is used to for comparison with theoretical solution.

Development of Computer Aided 3D Model From Computed Tomography Images and its Finite Element Analysis for Lumbar Interbody Fusion with Instrumentation

  • Deoghare, Ashish;Padole, Pramod
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • The purpose of this study is to clarify the mechanical behavior of human lumbar vertebrae (L3/L4) with and without fusion bone under physiological axial compression. The author has developed the program code to build the patient specific three-dimensional geometric model from the computed tomography (CT) images. The developed three-dimensional model provides the necessary information to the physicians and surgeons to visually interact with the model and if needed, plan the way of surgery in advance. The processed data of the model is versatile and compatible with the commercial computer aided design (CAD), finite element analysis (FEA) software and rapid prototyping technology. The actual physical model is manufactured using rapid prototyping technique to confirm the executable competence of the processed data from the developed program code. The patient specific model of L3/L4 vertebrae is analyzed under compressive loading condition by the FEA approach. By varying the spacer position and fusion bone with and without pedicle instrumentation, simulations were carried out to find the increasing axial stiffness so as to ensure the success of fusion technique. The finding was helpful in positioning the fusion bone graft and to predict the mechanical stress and deformation of body organ indicating the critical section.