• Title/Summary/Keyword: 3D Face Data

Search Result 255, Processing Time 0.031 seconds

Single Image-Based 3D Face Modeling for 3D Printing (3D 프린팅을 위한 단일 영상 기반 3D 얼굴 모델링 연구)

  • Song, Eungyeol;Koh, Wan-Ki;Yu, Sunjin
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.571-576
    • /
    • 2016
  • 3D printing has recently been used in various fields. Among various applications, 3D face data must be generated for 3D face printing. A laser scanner is used to acquire 3D face data, but there is a restriction that a person should not move during scanning. In this paper, we propose a 3D face modeling method based on a single image and a face transformation system to use the generated 3D face for virtual cosmetic surgery. We have defined facial feature points from the 3D face database for 3D face data generation. After extracting feature points from a single face image, 3D face of the input face image is generated corresponding to the 3D face feature points defined from the 3D face database. After 3D face modeling, 3D face modification part is applied for use such as virtual cosmetic surgery.

Pose-normalized 3D Face Modeling for Face Recognition

  • Yu, Sun-Jin;Lee, Sang-Youn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.984-994
    • /
    • 2010
  • Pose variation is a critical problem in face recognition. Three-dimensional(3D) face recognition techniques have been proposed, as 3D data contains depth information that may allow problems of pose variation to be handled more effectively than with 2D face recognition methods. This paper proposes a pose-normalized 3D face modeling method that translates and rotates any pose angle to a frontal pose using a plane fitting method by Singular Value Decomposition(SVD). First, we reconstruct 3D face data with stereo vision method. Second, nose peak point is estimated by depth information and then the angle of pose is estimated by a facial plane fitting algorithm using four facial features. Next, using the estimated pose angle, the 3D face is translated and rotated to a frontal pose. To demonstrate the effectiveness of the proposed method, we designed 2D and 3D face recognition experiments. The experimental results show that the performance of the normalized 3D face recognition method is superior to that of an un-normalized 3D face recognition method for overcoming the problems of pose variation.

An Hardware Error Analysis of 3D Automatic Face Recognition Apparatus(3D-AFRA) : Surface Reconstruction (3차원 안면자동인식기(3D-AFRA)의 Hardware 정밀도 검사 : 형상복원 오차분석)

  • Seok, Jae-Hwa;Song, Jung-Hoon;Kim, Hyun-Jin;Yoo, Jung-Hee;Kwak, Chang-Kyu;Lee, Jun-Hee;Kho, Byung-Hee;Kim, Jong-Won;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.2
    • /
    • pp.30-39
    • /
    • 2007
  • 1. Objectives The Face is an important standard for the classification of Sasang Constitution. We are developing 3D Automatic Face Recognition Apparatus(3D-AFRA) to analyse the facial characteristics. This apparatus show us 3D image and data of man's face and measure facial figure data. So we should examine the figure restoration error of 3D Automatic Fare Recognition Apparatus(3D-AFRA) in hardware Error Analysis. 2. Methods We scanned Face status by using 3D Automatic Face Recognition Apparatus(3D-AFRA). And also we scanned Face status by using laser scanner(vivid 9i). We compared facial shape data be restored by 3D Automatic Face Recognition Apparatus(3D-AFRA) with facial shape data that be restorated by 3D laser scanner. And we analysed the average error and the maximum error of two data. 3. Results and Conclusions In frontal face, the average error was 0.48mm. and the maximum error was 4.60mm. In whole face, the average error of was 0.99mm. And the maximum error was 6.64mm. In conclusion, We assessed that accuracy of 3D Automatic Face Recognition Apparatus(3D-AFRA) is considerably good.

  • PDF

Design of RBFNNs Pattern Classifier Realized with the Aid of PSO and Multiple Point Signature for 3D Face Recognition (3차원 얼굴 인식을 위한 PSO와 다중 포인트 특징 추출을 이용한 RBFNNs 패턴분류기 설계)

  • Oh, Sung-Kwun;Oh, Seung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.797-803
    • /
    • 2014
  • In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.

Designing and Implementing 3D Virtual Face Aesthetic Surgery System Based on Korean Standard Facial Data (한국 표준 얼굴 데이터를 적용한 3D 가상 얼굴 성형 제작 시스템 설계 및 구현)

  • Lee, Cheol-Woong;Kim, II-Min;Cho, Sae-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.5
    • /
    • pp.737-744
    • /
    • 2009
  • This paper is to study and implement 3D Virtual Face Aesthetic Surgery System which provides more satisfaction by comparing the before-and-after plastic face surgery using 3D face model. For this study, we implemented 3D Face Model Generating System which resembles 2D image of the user based on 3D Korean standard face model and user's 2D pictures. The proposed 3D Virtual Face Aesthetic Surgery System in this paper consists of 3D Face Model Generating System, 3D Skin Texture Mapping System, and Detailed Adjustment System for reflecting the detailed description of face. The proposed system provides more satisfaction to the medical uses and stability in the surgery in compare with other existing systems.

  • PDF

A Study On Three-dimensional Optimized Face Recognition Model : Comparative Studies and Analysis of Model Architectures (3차원 얼굴인식 모델에 관한 연구: 모델 구조 비교연구 및 해석)

  • Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.900-911
    • /
    • 2015
  • In this paper, 3D face recognition model is designed by using Polynomial based RBFNN(Radial Basis Function Neural Network) and PNN(Polynomial Neural Network). Also recognition rate is performed by this model. In existing 2D face recognition model, the degradation of recognition rate may occur in external environments such as face features using a brightness of the video. So 3D face recognition is performed by using 3D scanner for improving disadvantage of 2D face recognition. In the preprocessing part, obtained 3D face images for the variation of each pose are changed as front image by using pose compensation. The depth data of face image shape is extracted by using Multiple point signature. And whole area of face depth information is obtained by using the tip of a nose as a reference point. Parameter optimization is carried out with the aid of both ABC(Artificial Bee Colony) and PSO(Particle Swarm Optimization) for effective training and recognition. Experimental data for face recognition is built up by the face images of students and researchers in IC&CI Lab of Suwon University. By using the images of 3D face extracted in IC&CI Lab. the performance of 3D face recognition is evaluated and compared according to two types of models as well as point signature method based on two kinds of depth data information.

Pose-Normalized 3D Face Modeling (포즈 정규화된 3D 얼굴 모델링 기법)

  • Yu, Sun-Jin;Kim, Sang-Ki;Kim, Il-Do;Lee, Sang-Youn
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.455-456
    • /
    • 2006
  • This paper presents an automatic pose-normalized 3D face data acquisition method using 2D and 3D information. We propose an automatic pose-normalized 3D face acquisition method that accomplishes 3D face modeling and 3D face pose-normalization at once. The proposed method uses 2D information with AAM (Active Appearance Model) and 3D information with 3D normal vector. The 3D face modeling system consists of 2 cameras and 1 projector. In order to verify proposed pose-normalized 3D modeling method, we made an experiment for 2.5D face recognition. The experimental result shows that proposed method is robust against pose variation.

  • PDF

2D - 3D Human Face Verification System based on Multiple RGB-D Camera using Head Pose Estimation (얼굴 포즈 추정을 이용한 다중 RGB-D 카메라 기반의 2D - 3D 얼굴 인증을 위한 시스템)

  • Kim, Jung-Min;Li, Shengzhe;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.4
    • /
    • pp.607-616
    • /
    • 2014
  • Face recognition is a big challenge in surveillance system since different rotation angles of the face make the difficulty to recognize the face of the same person. This paper proposes a novel method to recognize face with different head poses by using 3D information of the face. Firstly, head pose estimation (estimation of different head pose angles) is accomplished by the POSIT algorithm. Then, 3D face image data is constructed by using head pose estimation. After that, 2D image and the constructed 3D face matching is performed. Face verification is accomplished by using commercial face recognition SDK. Performance evaluation of the proposed method indicates that the error range of head pose estimation is below 10 degree and the matching rate is about 95%.

Non-intrusive 3D Face Data Acquisition System (비 강압적 3차원 얼굴 데이터 획득 시스템 연구)

  • Kim, Joong-Rock;Yu, Sun-Jin;Lim, Kyung-Min;Kim, Soo-Yeon;Lee, Sang-Youn
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.929-930
    • /
    • 2008
  • To develop reliable 3D face recognition system, many researchers also have focused on 3D face data acquisition system. Previous many 3D face acquisition systems use visible patterns to solve corresponding problem, and this pattern made anyone who wants to be verified uncomfortable. In this paper, we propose a new invisible infrared line-laser pattern for 3D face data acquisition.

  • PDF

Three-Dimensional Face Point Cloud Smoothing Based on Modified Anisotropic Diffusion Method

  • Wibowo, Suryo Adhi;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.84-90
    • /
    • 2014
  • This paper presents the results of three-dimensional face point cloud smoothing based on a modified anisotropic diffusion method. The focus of this research was to obtain a 3D face point cloud with a smooth texture and number of vertices equal to the number of vertices input during the smoothing process. Different from other methods, such as using a template D face model, modified anisotropic diffusion only uses basic concepts of convolution and filtering which do not require a complex process. In this research, we used 6D point cloud face data where the first 3D point cloud contained data pertaining to noisy x-, y-, and z-coordinate information, and the other 3D point cloud contained data regarding the red, green, and blue pixel layers as an input system. We used vertex selection to modify the original anisotropic diffusion. The results show that our method has improved performance relative to the original anisotropic diffusion method.