References
- A. Mian, M. Bennamoun, and R. Owens, "Automatic 3D face detection, normalization and recognition," in Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, NC, June 14-16, 2006, pp. 735-742. http://dx.doi.org/10.1109/3DPVT.2006.32
- V. Blanz and T. Vetter, "Face recognition based on fitting a 3D morphable model," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, pp. 1063-1074, Sep. 2003. http://dx.doi.org/10.1109/TPAMI.2003.1227983
- B. Y. L. Li, A. S. Mian, W. Liu, and A. Krishna, "Using Kinect for face recognition under varying poses, expressions, illumination and disguise," in IEEE Workshop on Applications of Computer Vision, Tampa, FL, January 15-17, 2013, pp. 186-192. http://dx.doi.org/10.1109/WACV.2013.6475017
- B. Y. L. Li, W. Liu, S. An, and A. Krishna, "Tensor based robust color face recognition," in Proceedings of the 21st International Conference on Pattern Recognition, Tsukuba, Japan, November 11-15, 2012, pp. 1719-1722.
- Y. L. Chen, H. T. Wu, F. Shi, X. Tong, and J. Chai, "Accurate and robust 3D facial capture using a single RGBD camera," in Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, December 1-8, 2013, pp. 3615-3622. http://dx.doi.org/10.1109/ICCV.2013.449
- H. Yagou, Y. Ohtake, and A. Belyaev, "Mesh smoothing via mean and median filtering applied to face normals," in Proceedings of the Geometric Modeling and Processing, Wako, Japan, July 10-12, 2002, pp. 124-131. http://dx.doi.org/10.1109/GMAP.2002.1027503
- C. M. Ma, S. H. Yoo, and S. K. Oh, "Design of face recognition algorithm based optimized pRBFNNs using three-dimensional scanner," Journal of Korean Institute of Intelligent Systems, vol. 22, no. 6, pp. 748-753, Dec. 2012. http://dx.doi.org/10.5391/JKIIS.2012.22.6.748
- S. H. Choi, S. Cho, and S. T. Chung, "Improvement of face recognition speed using pose estimation," Journal of Korean Institute of Intelligent Systems, vol. 20, no. 5, pp. 677-682, Oct. 2010. http://dx.doi.org/10.5391/JKIIS.2010.20.5.677
- P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629-639, Jul. 1990. http://dx.doi.org/10.1109/34.56205
- G. Gerig, O. Kubler, R. Kikinis, and F. A. Jolesz, "Nonlinear anisotropic filtering of MRI data," IEEE Transactions on Medical Imaging, vol. 11, no. 2, pp. 221-232, Jun. 1992. http://dx.doi.org/10.1109/42.141646
- H. Jang, H. Ko, Y. Choi, Y. Han, and H. Hahn, "A new face tracking method using block difference image and Kalman filter in moving picture," Journal of Korean Institute of Intelligent Systems, vol. 15, no. 2, pp. 163-172, Apr. 2005 https://doi.org/10.5391/JKIIS.2005.15.2.163
- S. K. Oh, S. H. Oh, and H. K. Kim, "Design of threedimensional face recognition system using optimized PRBFNNs and PCA: comparative analysis of evolutionary algorithms," Journal of Korean Institute of Intelligent Systems, vol. 23, no. 6, pp. 539-544, Dec. 2013. http://dx.doi.org/10.5391/JKIIS.2013.23.6.539
- G. Taubin, "Linear anisotropic mesh filtering," IBM Research Report RC-22213. Available http://mesh.brown.edu/taubin/pdfs/Taubin-ibm22213.pdf
- T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher, "Geometric surface smoothing via anisotropic diffusion of normals," in Proceedings of the IEEE Visualization, Boston, MA, November 1, 2002, pp. 125-132. http://dx.doi.org/10.1109/VISUAL.2002.1183766
- J. Weickert, Anisotropic Diffusion in Image Processing, Stuttgart, Germany: B.G. Teubner, 1998. Available http://www.lpi.tel.uva.es/muitic/pim/docus/anisotropic diffusion.pdf
- T. R. Jones, "Feature preserving smoothing of 3D surface scans," M.S. thesis, Massachusetts Institute of Technology, Cambridge, MA, 2003.
- D. Lopez, "Anisotropic diffusion (Perona & Nalik)," Available http://www. mathworks.com/matlabcentral/fileexchange/14995-anisotropic-diffusion-perona-malik-
Cited by
- Implicit Surface Representation of Three-Dimensional Face from Kinect Sensor vol.25, pp.4, 2015, https://doi.org/10.5391/JKIIS.2015.25.4.412
- Convolutional Shallow Features for Performance Improvement of Histogram of Oriented Gradients in Visual Object Tracking vol.2017, pp.1563-5147, 2017, https://doi.org/10.1155/2017/6329864