• Title/Summary/Keyword: 3D ComputerGraphics

Search Result 534, Processing Time 0.024 seconds

Interaction between Water Surface and 3D Object by using Linear Convolution and Bounding Sphere (선형 컨벌루션과 경계구를 이용한 물표면과 객체의 실시간 상호작용 생성)

  • Kang, Gyeong-Heon;Lee, Hyeon-Cheol;Hur, Gi-Taek;Kim, Eun-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.4
    • /
    • pp.17-29
    • /
    • 2008
  • In Computer Graphics, fluid dynamics is used for animating and expressing the various special effects of water. As the hardware performance is getting higher, the several algorithms for fluid dynamics become to be executed in real time. However, it still requires a lot of computational time to get the realistic and detailed results. Therefore, there are many researches on the techniques of balancing between performance and quality. It must give priority to the executive performance preserving the visual reality even though sacrificing the physical reality, specially in applications with the game context which need to express the interaction between 3D objects and the surface of the water such as the sea or a lake. In this paper, we propose a method for the realtime animation of interactions between 3D objects and the surface of the water using the linear convolution of height fields and the bounding spheres of object.

Character Motion Control by Using Limited Sensors and Animation Data (제한된 모션 센서와 애니메이션 데이터를 이용한 캐릭터 동작 제어)

  • Bae, Tae Sung;Lee, Eun Ji;Kim, Ha Eun;Park, Minji;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.85-92
    • /
    • 2019
  • A 3D virtual character playing a role in a digital story-telling has a unique style in its appearance and motion. Because the style reflects the unique personality of the character, it is very important to preserve the style and keep its consistency. However, when the character's motion is directly controlled by a user's motion who is wearing motion sensors, the unique style can be discarded. We present a novel character motion control method that uses only a small amount of animation data created only for the character to preserve the style of the character motion. Instead of machine learning approaches requiring a large amount of training data, we suggest a search-based method, which directly searches the most similar character pose from the animation data to the current user's pose. To show the usability of our method, we conducted our experiments with a character model and its animation data created by an expert designer for a virtual reality game. To prove that our method preserves well the original motion style of the character, we compared our result with the result obtained by using general human motion capture data. In addition, to show the scalability of our method, we presented experimental results with different numbers of motion sensors.

Deep Neural Network Analysis System by Visualizing Accumulated Weight Changes (누적 가중치 변화의 시각화를 통한 심층 신경망 분석시스템)

  • Taelin Yang;Jinho Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.85-92
    • /
    • 2023
  • Recently, interest in artificial intelligence has increased due to the development of artificial intelligence fields such as ChatGPT and self-driving cars. However, there are still many unknown elements in training process of artificial intelligence, so that optimizing the model requires more time and effort than it needs. Therefore, there is a need for a tool or methodology that can analyze the weight changes during the training process of artificial intelligence and help out understatnding those changes. In this research, I propose a visualization system which helps people to understand the accumulated weight changes. The system calculates the weights for each training period to accumulates weight changes and stores accumulated weight changes to plot them in 3D space. This research will allow us to explore different aspect of artificial intelligence learning process, such as understanding how the model get trained and providing us an indicator on which hyperparameters should be changed for better performance. These attempts are expected to explore better in artificial intelligence learning process that is still considered as unknown and contribute to the development and application of artificial intelligence models.

Design of an Effective Bump Mapping Hardware Architecture Using Angular Operation (각 연산을 이용한 효과적인 범프 매핑 하드웨어 구조 설계)

  • 이승기;박우찬;김상덕;한탁돈
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.663-674
    • /
    • 2003
  • Bump mapping is a technique that represents the detailed parts of the object surface, such as a perturberance of the skin of a peanut, using the geometry mapping without complex modeling. However, the hardware implementation for bump mapping is considerable, because a large amount of per pixel computation, including the normal vector shading, is required. In this paper, we propose a new bump mapping algorithm using the polar coordinate system and its hardware architecture. Compared with other existing architectures, our approach performs bump mapping effectively by using a new vector rotation method for transformation into the reference space and minimizing illumination calculation. Consequently, our proposed architecture reduces a large amount of computation and hardware requirements.

Mesh Parameterization based on Mean Value Coordinates (중간값 좌표계에 기초한 메쉬 매개변수화)

  • Kim, Hyoung-Seok B.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1377-1383
    • /
    • 2008
  • Parameterization of a 3D triangular mesh is a fundamental problem in various applications of geometric modeling and computer graphics. There are two major paradigms in mesh parameterization: energy functional minimization and the convex combination approach. In general, the convex combination approach is wifely used because of simple concept and one-to-one mapping. However, the approach has some problems such as high distortion near the boundary and time complexity. Moreover, the stability of the linear system may not be preserved according to the geometric information of the mesh. In this paper, we present an extension of the convex combination approach based on the mean value coordinates, which resolves the drawbacks of the convex combination approach. This may be a more practical solution because it is able to generate a stable linear system in a short time.

Research on Digital Restoration of Culture Archetype (문화원형의 디지털복원)

  • Lee, Chang-Soon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.1
    • /
    • pp.25-36
    • /
    • 2010
  • Recently, digitizing technologies for conservation and restoration of tangible intangible cultural properties are coming into spotlight. Because cultural properties are easy to be lost and damaged over the years, After construction of cultural assets database we can reconstruct the cultural asset making use of the reverse engineering when needed, and implement digital contents such as computer graphics, 3D virtural realization, hologram, etc. So in this paper, we scrutinize visual and technical factors occurring in different types of digital restoration of cultural properties, and present problems and improvements, and try to research technological prowess and visual mechanism.

Interlaced Scanning Volume Raycasting (비월주사식 볼륨 광선 투사법)

  • Choi, Ei-Kyu;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.9 no.4
    • /
    • pp.89-96
    • /
    • 2009
  • In general, the size of volume data is large since it has logical 3D structure so it takes long time to manipulate. Much work has been done to improve processing speed of volume data. In this paper, we propose a interlaced scanning volume rendering that reduce computation time by using temporal coherence with minimum loss of image quality. It renders a current frame by reusing information of previous frame. Conventional volume raycasting renders each frame by casting rays on every pixels. On the other hand, our methods divided an image into n-pixel blocks, then it casts a ray on a pixel of a block per each frames. Consequently, it generates an image by accumulating pixel values of previous n frames. The quality of rendered image of our method is better than that of simple screen space subsampling method since it uses afterimage effect of human cognitive system, and it is n-times faster that the previous one.

  • PDF

Individual customized insole model (개인 맞춤형 자동 변형 인솔 모델)

  • Song, Eungyeol;Kim, Kyoungtae;Kim, Sang-hoon;Lee, Sangyoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.323-329
    • /
    • 2016
  • This paper describes an insole FFO(Functional Foot Orthosis) model for comfortable walking by considering weight distribution. There are many ways to make an insole FFO model such as using 3D computer graphics, or plaster manually. Thus, we proposed a standardized way to make an insole model, specifically called, robust and automatically personalized deformable insole model. Our proposed method showed 0.8cm average error compared between our proposed auto-deformable insole model and the other insole model manually deformed by experts. Therefore, our proposed method can be an efficient way to make a customized insole model with small error compared to the manually customized insole model.

CUDA-based Object Oriented Programming Techniques for Efficient Parallel Visualization of 3D Content (3차원 콘텐츠의 효율적인 병렬 시각화를 위한 CUDA 환경 기반 객체 지향 프로그래밍 기법)

  • Park, Tae-Jung
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.169-176
    • /
    • 2012
  • This paper presents a parallel object-oriented programming (OOP) platform for efficient visualization of three-dimensional content in CUDA environments. For this purpose, this paper discusses the features and limitations in implementing C++ object-oriented codes using CUDA and proposes the solutions. Also, it presents how to implement a 3D parallel visualization platform based on the MVC (Model/View/Controller) design pattern. Also, it provides sample implementations for integral MLS (iMLS) and signed distance fields (SDFs) based on the Marching Cubes and Raytracing. The proposed approach enables GPU parallel processing only by implementing simple interfaces. Based on this, developers can expect general benefits that are common in general OOP techniques including abstractization and inheritance. Though I implemented only two specific samples in this paper, I expect my approach can be widely applied to general computer graphics problems.

Development of VR Healing Content 'NORNIR' Using Color Therapy (컬러테라피를 활용한 VR 힐링 콘텐츠, '노르니르' 개발)

  • Choi, Seyoung;Kim, Sujin;Lee, Nayoung;Lee, Kihan;Ko, Hyeyoung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.143-153
    • /
    • 2020
  • This study embodies and proposes VR color therapy healing contents 'Nornir' that can manage stress in daily life. "Nornir" applies the CRR analysis method to provide a customized VR color therapy experience according to the three colors selected by the user. It is designed to enable users to understand themselves through their color journey, to rec eive various color interactions and stimuli to implement in the future, and to provide healing that lowers stress levels. Based on the results implemented, the Korean version of the mood condition test 'K-POMS' was conducted before an d after the demonstration to check the user's stress changes after the content demonstration. Experiments have shown that users clearly see a decrease in negative emotions and an increase in positive emotions. By using VR technology, color psychotherapy rules are combined to provide the possibility of relieving stress for users who are exposed to fre quent stress in daily life.