• Title/Summary/Keyword: 3D ComputerGraphics

Search Result 539, Processing Time 0.025 seconds

A Software Method for Improving the Performance of Real-time Rendering of 3D Games (3D 게임의 실시간 렌더링 속도 향상을 위한 소프트웨어적 기법)

  • Whang, Suk-Min;Sung, Mee-Young;You, Yong-Hee;Kim, Nam-Joong
    • Journal of Korea Game Society
    • /
    • v.6 no.4
    • /
    • pp.55-61
    • /
    • 2006
  • Graphics rendering pipeline (application, geometry, and rasterizer) is the core of real-time graphics which is the most important functionality for computer games. Usually this rendering process is completed by both the CPU and the GPU, and a bottleneck can be located either in the CPU or the GPU. This paper focuses on reducing the bottleneck between the CPU and the GPU. We are proposing a method for improving the performance of parallel processing for real-time graphics rendering by separating the CPU operations (usually performed using a thread) into two parts: pure CPU operations and operations related to the GPU, and let them operate in parallel. This allows for maximizing the parallelism in processing the communication between the CPU and the GPU. Some experiments lead us to confirm that our method proposed in this paper can allow for faster graphics rendering. In addition to our method of using a dedicated thread for GPU related operations, we are also proposing an algorithm for balancing the graphics pipeline using the idle time due to the bottleneck. We have implemented the two methods proposed in this paper in our networked 3D game engine and verified that our methods are effective in real systems.

  • PDF

A Low Power 3D Graphics Accelerator Considering Both Active and Standby Modes for Mobile Devices (모바일기기의 동작모드와 대기모드를 모두 고려한 저전력 3차원 그래픽 가속기)

  • Kim, Young-Sik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.2
    • /
    • pp.57-64
    • /
    • 2007
  • This paper proposed the low power texture cache for mobile 3D graphics accelerators. It is very important to reduce the leakage power in the standby mode for mobile 3D graphics accelerators and the memory access latency of texture mapping in the active mode which needs a large memory bandwidth. The proposed structure reduces the leakage power using variable threshold values of power mode transitions according to the selected texture filtering algorithms of application programs, which has the run time gain for texture mapping. In the trace driven cache simulation the proposed structure shows the best 7% performance gain to the previous MSA cache according to the new performance metric considering both normalized leakage power and run time impact.

Implementation of Multi-user 3D Virtual Environment System on a local area network (다자참여형 3차원 가상환경 시스템 구현)

  • Kim, Lae-Hyun;Kim, Juh-Han;Ko, Heedong;Choe, ByungKyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.1
    • /
    • pp.29-36
    • /
    • 1997
  • Most Virtual Reality Systems have been developed to support only a single user on a stand-alone system. With increasing availability of Internet, many people are taking strong interests in distributed Virtual Reality : the virtual environment is shared by many paticipants interacting over the network. To support sharing virtual environment and interactions on a network, we developed novel contributions to 3D world description and a network model. Interactive 3D world description is based on VRML, which is extended to support multi-user interactions. Then network model in our system consists of an architecture and a set of protocols for realizing a multi-user interactive shared 3D environment in IP multicast environment.

  • PDF

Reconfigurable Architecture Design for H.264 Motion Estimation and 3D Graphics Rendering of Mobile Applications (이동통신 단말기를 위한 재구성 가능한 구조의 H.264 인코더의 움직임 추정기와 3차원 그래픽 렌더링 가속기 설계)

  • Park, Jung-Ae;Yoon, Mi-Sun;Shin, Hyun-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • Mobile communication devices such as PDAs, cellular phones, etc., need to perform several kinds of computation-intensive functions including H.264 encoding/decoding and 3D graphics processing. In this paper, new reconfigurable architecture is described, which can perform either motion estimation for H.264 or rendering for 3D graphics. The proposed motion estimation techniques use new efficient SAD computation ordering, DAU, and FDVS algorithms. The new approach can reduce the computation by 70% on the average than that of JM 8.2, without affecting the quality. In 3D rendering, midline traversal algorithm is used for parallel processing to increase throughput. Memories are partitioned into 8 blocks so that 2.4Mbits (47%) of memory is shared and selective power shutdown is possible during motion estimation and 3D graphics rendering. Processing elements are also shared to further reduce the chip area by 7%.

Development of Web3D-based Virtual Reality System for Hydrogen Station (웹 3D 기술을 사용한 수소충전소 가상체험교육시스템 제작)

  • Yoon, Jong-Chul;Kwon, Ji-Yong;Lee, In-Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.2
    • /
    • pp.35-40
    • /
    • 2009
  • In this paper, we present the web3D-based virtual reality(VR) system for the safety education of the hydrogen station. Currently, hydrogen is considered the next generation energy, and hydrogen station is a part of core infrastructure in hydrogen industry. However, the experience of safety equipment in the hydrogen station is limited to the non-experts, because it is a restricted area in general industry. Therefore, using the event driven method, we develop the VR system to transfer the information of hydrogen station to the non-experts. Using our system, user experiences the safety concerns in the hydrogen station, and also learn the informations of hydrogen energy.

  • PDF

Geometric Features Detection of 3D Teeth Models using Approximate Curvatures (근사 곡률을 이용한 3차원 치아 모델의 기하학적 특징 검출)

  • Jang, Jin-Ho;Yoo, Kwan-Hee
    • The KIPS Transactions:PartA
    • /
    • v.10A no.2
    • /
    • pp.149-156
    • /
    • 2003
  • In the latest medical world, the attempt of reconstructing anatomical human body system using computer graphics technology awakes people's interests. Actually, this trial has been made in dentistry too. There are a lot of practicable technology fields using computer graphics in dentistry For example, 3D visualization and measurement of dental data, detection of implant location, surface reconstruction for restoring artificial teeth in prostheses and relocation of teeth in orthodontics can be applied. In this paper, we propose methods for definitely detecting the geometric features of teeth such as cusp, ridge, fissure and pit, which have been used as most important characteristics in dental applications. The proposed methods are based on the approximate curvatures that are measured on a 3D tooth model made by scanning an impression. We also give examples of the geometric features detected by using the proposed methods. Comparing to other traditional methods visually, the methods are very useful in detecting more accurate geometric features.

Virtual DressUp system by using image deformation method (이미지 변형 기법을 이용한 가상 드레스업 시스템)

  • Kim, Na-Ri;Yoon, Jong-Chul;Lee, In-Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • This paper introduces a virtual dress up system, according to user's input model and garment image. At first step, we deform the garment image by using skeleton structures and ARAP method. Next step, sampling the boundary points and find their matching vertices which are used for optimizing the boundary fitting. In 2D rendering of the dress up, they have some unrealistic results, so we reconstruct the garment mesh to the 3D mesh. Rendering from the reconstructed 3D mesh, we can get the final dress up result. We present that our system produce a visually plausible and well-fitted virtual dress up results.

  • PDF

3D Printing Based Patient-specific Orbital Implant Design and Production by Using A Depth Image (깊이 영상을 이용한 3D 프린팅 기반 환자 맞춤형 안와 임플란트의 설계 및 제작)

  • Seo, Udeok;Kim, Ku-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.903-914
    • /
    • 2020
  • In this paper, we present a novel algorithm to generate a 3D model of patient-specific orbital implant, which is finally produced by the 3D printer. Given CT (computed tomography) scan data of the defective orbital wall or floor, we compose the depth image of the defect site by using the depth buffering, which is a computer graphics technology. From the depth image, we compute the 3D surface which fills the broken part by interpolating the points around the broken part. By thickening the 3D surface, we get the 3D volume mesh of the orbital implant. Our algorithm generates the patient-specific orbital implant whose shape is accurately coincident to the broken part of the orbit. It provides the significant time efficiency for manufacturing the implant with supporting high user convenience.

Physics-Based Real-Time Simulation of Thin Rods (가는 막대의 물리기반 실시간 시뮬레이션)

  • Choi, Min-Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • This paper proposes a real-time simulation technique for thin rods undergoing large rotational deformation. Rods are thin objects such as ropes and hairs that can be abstracted as 1D structures. Development of a satisfactory physical model that runs in real-time but produces visually convincing animation of thin rods has been remaining a challenge in computer graphics. We adopt the energy formulation based on continuum mechanics, and develop a modal warping technique for rods that can integrate the governing equation in real-time. This novel simulation framework results from making extensions to the original modal warping technique, which was developed for the simulation of 3D solids. Experiments show that the proposed method runs in real-time even for large meshes, and that it can simulate large bending and/or twisting deformations with acceptable realism.

Analysis of Manual 3D Projection Mapping Processes Using 3D Mesh Models (3D 메쉬 모델을 이용한 수동 3D 프로젝션 맵핑 과정 분석)

  • Mina Kim;Jungjin Lee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • Software tools for manual 3D projection mapping have been widely used in theme parks and exhibitions. However, no research has been conducted on detailed utilization methods and usability of those tools yet. This study organizes the entire process of manual 3D projection mapping step by step and analyzes the problems that occurred at each step to identify potential improvements of 3D projection mapping tools. First, we introduce the process, which includes: two methods for creating virtual-physical object pairs to construct a virtual environment that is identical to the real-world target of the 3D projection mapping, the production of video textures for special effects, and mapping methods that use semi-automatic projector calibration. In addition, through experiments comparing and analyzing two widely used tools under various conditions for 3D mapping, we identified the technical limitations, performance differences between tools, and issues that impede usability. Finally, we suggest improvements and future research directions to enhance the usability of the 3D projection mapping technology.