• Title/Summary/Keyword: 3D CT

Search Result 1,098, Processing Time 0.035 seconds

Evaluation of Image Uniformity and Radiolucency for Computed Tomography Phantom Made of 3-Dimensional Printing of Fused Deposition Modeling Technology by Using Acrylonitrile Butadiene Styrene Resin (아크릴로나이트릴·뷰타다이엔·스타이렌 수지와 용융적층조형 방식의 3차원 프린팅 기술로 제작된 전산화단층영상장치 팬톰에서 영상 균일성 및 X선 투과성 평가)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.337-344
    • /
    • 2016
  • The purpose of this study was to evaluate the radiolucency for the phantom output to the 3D printing technology. The 3D printing technology was applied for FDM (fused deposition modeling) method and was used the material of ABS (acrylonitrile butadiene styrene) resin. The phantom was designed in cylindrical uniformity. An image uniformity was measured by a cross-sectional images of the 3D printed phantom obtained from the CT equipment. The evaluation of radiolucency was measured exposure dose by the inserted ion-chamber from the 3D printed phantom. As a results, the average of uniformity in the cross-sectional CT image was 2.70 HU and the correlation of radiolucency between PMMA CT phantom and 3D printed ABS phantom is found to have a high correlation to 0.976. In the future, this results will be expected to be used as the basis for the phantom production of the radiation quality control by used 3D printing technology.

A Study on 3D CT Image Segmentation and Registration of Mandibular First Premolar (하학 제 1 소구치의 3 차원 CT 영상 분할 및 정합 연구)

  • Jin K.C.;Chun K.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.175-176
    • /
    • 2006
  • The aim of the 3D medical imaging is to facilitate the creation of clinically usable image-based algorithm. Clinically usable imaging algorithm for image analysis requires a high degree of interaction to verify and correct results from registration algorithms, such as the Insight Toolkit (ITK) and the Visualization Toolkit (VTK) which are the class libraries. ITK provides segmentation algorithms and VTK has powerful 3D visualization. However, to apply those libraries to the medical images such as Computerized Tomography (CT), the algorithm based on the interactive construction and modification of data objects are necessary. In this paper we showed the 3D registration about mandibular premolar of human teeth acquired by micro-CT scanner. Also, we used the ITK to find the contour of pulp layer of premolar, furthermore, the 3D imaging was visualized with VTK designed to create one kind of view on the data of 3D visualization. Finally, we evaluated that the volume model of pulp layer would be useful for the tooth morphology in dental medicine.

  • PDF

A Study on the Fabrication of bone Model X-ray Phantom Using CT Data and 3D Printing Technology (CT 데이터와 3D 프린팅 기술을 이용한 뼈 모형 X선 팬텀 제작에 관한 연구)

  • Yun, Myeong Seong;Han, Dong-Kyoon;Kim, Yeon-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.879-886
    • /
    • 2018
  • A 3-dimensional (D) printer is a device capable of outputting a three-dimensional solid object based on data modeled in a computer. These features are utilized in the bone model X - ray phantom production etc using CT data by fusing with the radiation science field. A bone model phantom was made using data obtained by CT scan of an existing Pelvis phantom, using PLA, Wood, XT-CF20, Glow fill, Steel filaments which are materials of Fused Filament Fabrication (FFF) 3D printer.Measure Hounsfield Unit (HU) with images obtained by CT scan of the existing Pelvis phantom and five material phantoms made with 3D printer under the same conditions,SI and SNR were measured using a diagnostic X-ray generator, and each phantom was compared and analyzed.As a result, the X - ray phantom in the X - ray examination condition of the limb was found to be most suitable for the glow fill filament.The characteristics of the filament can be known to the base of this research and the practicality of X - ray phantom fabrication was confirmed.

An Experience Type Virtual Reality Training System for CT(Computerized Tomography) Operations (컴퓨터 단층 촬영기(CT)의 가상 실습을 위한 3차원 체험형 교육 시스템)

  • Shin, Yong-Min;Kim, Young-Ho;Kim, Byung-Ki
    • The KIPS Transactions:PartD
    • /
    • v.14D no.5
    • /
    • pp.501-508
    • /
    • 2007
  • Simulation system was introduced and used a lot in the fields of aviation, vessel, and medical treatment. 3D Simulation system has been used quite insufficiently as it requires a lot of system resource and huge amount of computer calculation. As the graphic card performance and simulation function developed, however, PC based simulation has been activated and is verified of its possibility as an educational software. However, educational institutions need to invest huge amount of budget and manpower to purchase and maintain CT Equipment. For such a reason, educational institutions entrust their students to hospitals for indirect experience of operation or for mere observation. This study, therefore, developed a CT Virtual reality education system with which medical CT Equipment can be directly operated in PC based 3D Virtual environment.

On the development of S/W tools for industrial 3D X-ray computed tomography employing general software (범용 소프트웨어를 사용한 산업용 3차원 X-ray Computed Tomography의 툴 개발)

  • Choi, Hyeong-Seok;Yang, Yoon-Gi
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.768-776
    • /
    • 2019
  • With the deployment of 4-th generation industrial revolution, the computer based manufacturing technologies employing advanced IT technology are much more popular than any other past years. In this research, some novel S/W technologies related to the industrial X-ray CT (computed tomography) for the inspection of the industrial parts are introduced. First, newly constructed industrial X-ray CT is presented in this paper, where some basic principles and functions of the CT are described. Then some research platforms are developed to generate more advanced functionalities of the industrial CT. Especially, the data transform from CT to general S/W such as Matlab is conducted. And based on this techniques, some supplementary S/W platform such as GUI (graphical user interface) of the CT S/W and some 3D voxel based image processing technologies can be developed in this paper. The industrial CT is one of the rare research items and it's values can be much more enhanced when it is used with advanced IT technologies.

Usefulness of MRI 3D Image Reconstruction Techniques for the Diagnosis and Treatment of Femoral Acetabular Impingement Syndrome(Cam type) (대퇴 골두 충돌 증후군(Cam type)의 진단과 치료를 위한 자기공명 3D 영상 재구성 기법의 유용성)

  • Kwak, Yeong-Gon;Kim, Chong-Yeal;Cho, Yeong-Gi
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.11
    • /
    • pp.313-321
    • /
    • 2015
  • To minimize CT examination for Hip FAI diagnosis and operation plan. also, whether the MRI 3D images can replace Hip Clock face image was evaluated when performing Hip FAI MRI by using additional 3D image. This study analyzed Hip MRI and 3D Hip CT images of 31 patients in this hospital. For the purpose of evaluating the images, one orthopedic surgeon and one radiology specialist reconstructed Clock face, at MR and CT modality, by superior 12 o'clock, labrum front 3 o'clock, and the other side 9 o'clock, centering on Hip joint articular transverse ligament 6 o'clock. Afterwards, by the Likert Scale 5 point scale (independent t-test p<0.005), this study evaluated the check-up of A. retinacular vessel, B. head neck junction at 11 o'clock, A. Epiphyseal line, B. Cam lesion at 12 o'clock, and Cam lesion, Posterior Cam lesion at 1,2,3 and 4 o'clock. As for the verification of reliability among observers, this study verified coincidence by Cohen's weighted Kappa verification. As a result of Likert scale for the purpose of qualitative evaluation about the image, 11 o'clock A. retinacular vessel MR average was $3.69{\pm}1.0$ and CT average was $2.8{\pm}0.78$. B. head neck juncton didn't have a difference between two observers (p <0.416). 12 o'clock A. Epiphyseal line MR average was $3.54{\pm}1.00$ and CT average was $4.5{\pm}0.62$(p<0.000). B. Cam lesion didn't have a difference between two observers (p <0.532). 1,2,3,4 Cam lesion and Posterior Cam lesion were not statistically significant (p <0.656, p <0.658). As a result of weighted Kappa verification, 11 o'clock A.retinacular vessel CT K value was 0.663 and the lowest conformity. As a result of coincidence evaluation on respective item, a very high result was drawn, and two observers showed high reliability.

Making Human Phantom for X-ray Practice with 3D Printing (3D 프린팅을 활용한 일반 X선 촬영 실습용 인체 팬텀 제작)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • General phantom for practical X-ray photography Practical phantom is an indispensable textbook for radiology, but it is difficult for existing commercially available phantom to be equipped with various kinds of phantom because it is an expensive import. Using 3D printing technology, I would like to make the general phantom for practical X-ray photography less expensive and easier. We would like to use a skeleton model that was produced based on CT image data using a 3D printer of FDM (Fused Deposition Modeling) method as a phantom for general X-ray imaging. 3D slicer 4.7.0 program is used to convert CT DICOM image data into STL file, convert it to G-code conversion process, output it to 3D printer, and create skeleton model. The phantom of the completed phantom was photographed by X - ray and CT, and compared with actual medical images and phantoms on the market, there was a detailed difference between actual medical images and bone density, but it could be utilized as a practical phantom. 3D phonemes that can be used for general X-ray practice can be manufactured at low cost by utilizing 3D printers which are low cost and distributed and free 3D slicer program for research. According to the future diversification and research of 3D printing technology, it will be possible to apply to various fields such as health education and medical service.

DIAGNOSIS AND EXTRACTION OF IMPACTED SUPERNUMERARY TEETH IN THE MAXILLA WITH 3D DENIAL-CT (3D Dental-CT를 이용한 상악 매복 과잉치의 진단 : 증례보고)

  • Kim, Su-Kyoung;Yang, Yeon-Mi;Baik, Byeong-Ju;Kim, Sung-Hee;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.91-98
    • /
    • 2006
  • Supernumerary teeth are teeth which result from the continued budding of the enamel organ of the preceding tooth or from excessive proliferation of cells. They are most often found in the maxillary anterior region. And they can be responsible for a variey of irregularities in the primary and transitional dentition. There are two morphological types of supernumerary teeth, supplemental and rudimentary. Supplemental teeth have normal shape and size. In contrast, rudimental teeth have abnormal shape and smaller size. Supplemental supernumerary teeth are most common in permanent lateral incisor area. Its extraction must be decided more carefully with differential diagnosis between normal teeth, because it has normal shape and size. We reports 3 cases of the normal incisor shaped teeth in the maxillary anterior region. In all cases, we used the 3D Dental-CT as well as the conventional plain film such as periapical, occlusal, and panoramic radiograph. Consequently, 3B Dental-CT was valualble to figure out the exact position and morphology of supernumerary teeth, to do more conservative surgery and to reduce surgery stress and time.

  • PDF

3D CT Image Processing for 3D Printed Auricular Reconstruction of Unilateral Microtia Patient

  • Roh, Tae Suk;Yun, In Sik
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.80-82
    • /
    • 2014
  • Purpose Microtia is congenital anomaly of external ear and the reconstruction method for the external ear of microtia patient was based on autogenous costal cartilage framework. The application of 3D printing technique in medical science has made more possibility of human tissue restoration, and we tried to apply this technique in auricular reconstruction field. Materials and Methods As for unilateral microtia patient, the contralateral side ear is normal and reconstructive surgeon tried to mimic it for reconstruction of affected ear. So, we obtained facial CT scan of microtia patient and made mirror image of normal side ear. Moreover, to make the 3D scaffold based on the mirror image of normal ear and to apply this scaffold for the auricular reconstruction surgery, we included auriculocephalic sulcus and anterior fixation part. Results We could successfully obtain mirror image of normal ear, auriculocephalic sulcus and anterior fixation part for 3D scaffold printing. Conclusions Using this CT image processing and 3D printing technique, we will be able to make the scaffold for auricular reconstruction of unilateral microtia patient, and perform auricular reconstruction in near future.