• Title/Summary/Keyword: 3D Beam

Search Result 1,706, Processing Time 0.033 seconds

Lyot-Type High-Order Fiber Comb Filter Based on Polarization-Diversity Loop Structure (편광 상이 루프 구조 기반 Lyot형 고차 광섬유 빗살 필터)

  • Jo, Song-Hyun;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.10-15
    • /
    • 2013
  • In this paper, we propose a Lyot-type optical fiber comb filter based on a polarization-diversity loop structure (PDLS), which has flat-top pass bands and multiwavelength switching capability. Generally, the PDLS can remove the dependency of the filter on input polarization. The proposed filter is composed of a polarization beam splitter, two half-wave plates (HWPs), and two polarization-maintaining fiber loops concatenated with a $60^{\circ}$ offset between their principal axes. By controlling two HWPs, it can operate in a flat-top band mode or a lossy flat-top band mode with an inherent insertion loss of ~3.49dB. In particular, flat-top bands can be interleaved in both modes, which cannot be realized in a Lyot-Sagnac comb filter based on a fiber coupler. Compared with Solc-type high-order comb filters with the same order, the proposed filter shows sharper transition between pass and stop bands.

The study of laser processing parameter for $\mu$-BGA cutting ($\mu$-BGA 절단을 위한 레이저 가공 파라미터 연구)

  • Baek, kwang-yeol;Lee, cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.652-655
    • /
    • 2001
  • In this paper, I have studied minimization of the kerf-width and surface burning which are occurred after the singulation process of multi layer $\mu$-BGA( thickness 1.1 mm, 0.9 mm) with a pulsed Nd:YAG( = 532 nm, repetition rate = 10 Hz) laser. The thermal energy of a pulsed Nd:YAG laser is used to cut the copper layer. I have studied are minimization of the surface burning and kerf-width using a photo resist, $N_2$blowing and polyester double sided tape as a cutting parameter. The $N_2$blowing reduces a laser energy loss by debris and suppresses a surface carbonization. Also, I have studied characters of cutting with a choice of side of laser beam incidence. The SEM(Scanning Electron Microscope), non-contact 3D inspector and high-resolution microscope are used to measure kerf width and surface state. The optimum value of 1.1 mm $\mu$-BGA singulation is 524 $\mu$m that is reduced kerf width of 60 % with $N_2$blowing. And I obtained reduction of carbonization of 68 % with a polyester double side tape in 0.9 mm $\mu$-BGA. I used laser intensity of 1.91$\times$10$^{6}$ / $\textrm{cm}^2$ in this study.

  • PDF

Effect of $N_2$ flow rate on properties of GaN thin films ($N_2$ flow rate가 GaN 박막의 특성에 미치는 영향)

  • 허광수;박민철;명재민
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.66-69
    • /
    • 2001
  • Effect of $N_2$ flow rate on properties of GaN thin films grown by plasma-enhanced molecular beam epitaxy(PEMBE) was discussed to optimize the quality of thin films. It was found that at low $N_2$ flow rate indicating high III/V flux ratio, the growth rate of GaN thin films was controlled by $N_2$ flux, and at high $N_2$ flow rate the growth rate was not controlled by $N_2$ flux any longer. It was also found that III/V flux ratio affected film quality. The film grown at higher $N_2$ flow rate showed low background carrier concentration, higher carrier mobility, and narrow FWHM in band-edge emission of low temperature PL. It is thought that the film in more Ga flux region was grown by 2-dimensional layer-by-layer growth mode, and the film in more nitrogen region was grown by 3-D island growth mode. All samples exhibited a good crystallinity.

  • PDF

Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections

  • Andrade, A.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.281-301
    • /
    • 2004
  • The paper begins by presenting a unified variational approach to the lateral-torsional buckling (LTB) analysis of doubly symmetric prismatic and tapered thin-walled beams with open cross-sections, which accounts for the influence of the pre-buckling deflections. This approach (i) extends the kinematical assumptions usually adopted for prismatic beams, (ii) consistently uses shell membrane theory in general coordinates and (iii) adopts Trefftz's criterion to perform the bifurcation analysis. The proposed formulation is then applied to investigate the influence of the pre-buckling deflections on the LTB behaviour of prismatic and web-tapered I-section simply supported beams and cantilevers. After establishing an interesting analytical result, valid for prismatic members with shear centre loading, several elastic critical moments/loads are presented, discussed and, when possible, also compared with values reported in the literature. These numerical results, which are obtained by means of the Rayleigh-Ritz method, (i) highlight the qualitative differences existing between the LTB behaviours of simply supported beams and cantilevers and (ii) illustrate how the influence of the pre-buckling deflections on LTB is affected by a number of factors, namely ($ii_1$) the minor-to-major inertia ratio, ($ii_2$) the beam length, ($ii_3$) the location of the load point of application and ($ii_4$) the bending moment diagram shape.

Recommendation for the modelling of 3D non-linear analysis of RC beam tests

  • Sucharda, Oldrich;Konecny, Petr
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • The possibilities of non-linear analysis of reinforced-concrete structures are under development. In particular, current research areas include structural analysis with the application of advanced computational and material models. The submitted article aims to evaluate the possibilities of the determination of material properties, involving the tensile strength of concrete, fracture energy and the modulus of elasticity. To evaluate the recommendations for concrete, volume computational models are employed on a comprehensive series of tests. The article particularly deals with the issue of the specific properties of fracture-plastic material models. This information is often unavailable. The determination of material properties is based on the recommendations of Model Code 1990, Model Code 2010 and specialized literature. For numerical modelling, the experiments with the so called "classic" concrete beams executed by Bresler and Scordelis were selected. It is also based on the series of experiments executed by Vecchio. The experiments involve a large number of reinforcement, cross-section and span variants, which subsequently enabled a wider verification and discussion of the usability of the non-linear analysis and constitutive concrete model selected.

The Development of ASK Modulator for using Automatic Gate Passing System (자동게이트통관시스템에 사용하기 위한 ASK 변조기 MMIC 구현)

  • Jang, Mi-Sook;Ha, Young-Chul;Hwang, Sung-Beam;Moon, Tae-Jung;Hur, Hyuk;Song, Jeong-Geun;Hong, Chang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.233-236
    • /
    • 2001
  • We have designed and fabricated ASK modulator MMIC operating at 5.8GHz for OBE used in AGPS (Automatic Gate Passing System). ASK modulator MMIC was designed to apply a sing1e supply voltage of 3V to the drain in order to decrease ACP (Adjacent Channel Power). The measurement result of this chip exhibits on/off characteristic over 30dB. The design parameters are optimized through ADS simulation tool. The layouts and fabrication o( ASK Modulator MMIC were designed and fabricated by using ETRI 0.5${\mu}{\textrm}{m}$ MESFET library. The chip sizes were 1mm $\times$1mm. The performance analysis of the implemented ASK Modulator based on the design parameters is accomplished.

  • PDF

Effect of B Contents on Hardness Characteristic of Disk Laser Beam Welded CP Steels (CP강의 디스크레이저 용접부의 경도특성에 미치는 B 함유량의 영향)

  • Park, Tae-Jun;Yu, Jung-Woo;Kang, Jun-Il;Han, Tae-Kyo;Chin, Kwang-Keun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.107-114
    • /
    • 2011
  • CP steel was developed to reduce the weight and increase the strength of car body. When it was welded using state-of-the-art disk laser welding, the effected of boron on the microstructure and hardness were investigated. Welding power was fixed at 3.5kW and welding speeds were 4,8 and 12m/min. Full penetration occurred in welding speed of 12m/min and weld bead was almost unchanged with boron contents. But the welding speed increased, the upper and lower bead were narrowed. In a welding speed of more than 8m/min, underfill defects were formed on the bead bottom. The hardness of weld zone was somewhat fluctuation in fusion zone and HAZ showed the highest hardness values. The hardness of each region showed little change with the boron contents, and softening phenomenon occurred in the HAZ near the base metal regardless of the boron contents.

Fiber reinforced concrete L-beams under combined loading

  • Ibraheem, Omer Farouk;Abu Bakar, B.H.;Johari, I.
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The addition of steel fibers in concrete mixture is recognized as a non-conventional mass reinforcement scheme that improves the torsional, flexural, and shear behavior of structural members. However, the analysis of fiber reinforced concrete beams under combined torsion, bending, and shear is limited because of the complicated nature of the problem. Therefore, nonlinear 3D finite element analysis was conducted using the "ANSYS CivilFEM" program to investigate the behavior of fiber reinforced concrete L-beams. These beams were tested at different reinforcement schemes and loading conditions. The reinforcement case parameters were set as follows: reinforced with longitudinal reinforcement only and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions, namely, torsion-to-shear ratio (T/V) = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). Eight intermediate L-beams were constructed and tested in a laboratory under combined torsion, bending, and shear to validate the finite element model. Comparisons with the experimental data reveal that the program can accurately predict the behavior of L-beams under different reinforcement cases and combined loading ratios. The ANSYS model accurately predicted the loads and deformations for various types of reinforcements in L-beams and captured the concrete strains of these beams.

Effect of bond and bidirectional bolting on hysteretic performance of through bolt CFST connections

  • Ajith, M.S.;Beena, K.P.;Sheela, S.
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.315-329
    • /
    • 2020
  • Through bolt connections in Concrete Filled Steel Tubes (CFSTs) has been proved to be good in terms of seismic performance and constructability. Stiffened extended end plate connection with full through type bolt helps to avoid field weld altogether, and hence to improve the quality of joints. An experimental study was conducted on the hysteretic performance of square interior beam-column connections using flat extended end plates with through bolt. The study focuses on the effect of the bond between the tie rod and the core concrete on the cyclic performance of the joint. The study also quantifies how much the interior joint is getting strengthened due to the confinement effect induced by bi-directional bolting, which is widely used in 3D moment resisting frames. For a better understanding of the mechanism and for the prediction of shear capacity of the panel zone, a mathematical model was generated. The various parameters included in the model are the influence of axial load, amount of prestress induced by bolt tightening, anchorage, and the concrete strut action. The study investigates the strength, stiffness, ductility, and energy dissipation characteristics. The results indicate that the seismic resistance is at par with American Institute of Steel Construction (AISC) seismic recommendations. The bidirectional bolting and bond effect have got remarkable influence on the performance of joints.

Dosimetric Plan Comparison of Accelerated Partial Breast Irradiation (APBI) Using CyberKnife

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Lee, Jeongshim;Park, Seungwoo;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.73-80
    • /
    • 2018
  • Accelerated partial breast irradiation (APBI) is a new treatment delivery technique that decreases overall treatment time by using higher fractional doses than conventional fractionation. Here, a quantitative analysis study of CyberKnife-based APBI was performed on 10 patients with left-sided breast cancer who had already finished conventional treatment at the Inha University Hospital. Dosimetric parameters for four kinds of treatment plans (3D-CRT, IMRT, VMAT, and CyberKnife) were analyzed and compared with constraints in the NSABP B39/RTOG 0413 protocol and a published CyberKnife-based APBI study. For the 10 patients recruited in this study, all the dosimetric parameters, including target coverage and doses to normal structures, met the NSABP B39/RTOG 0413 protocol. Compared with other treatment plans, a more conformal dose to the target and better dose sparing of critical structures were observed in CyberKnife plans. Accelerated partial breast irradiation via CyberKnife is a suitable treatment delivery technique for partial breast irradiation and offers improvements over external beam APBI techniques.