• Title/Summary/Keyword: 3D 객체

Search Result 891, Processing Time 0.028 seconds

Development of BIM for a Maintenance System of Subway Infrastructures (지하철 구조물 유지관리 시스템을 위한 BIM 개발)

  • Shim, Chang-Su;Kim, Seong-Wook;Song, Hyun-Hye;Yun, Nu-Ri
    • Journal of KIBIM
    • /
    • v.1 no.1
    • /
    • pp.6-12
    • /
    • 2011
  • BIM(Building Information Modeling) technologies are the most effective for the maintenance of infrastructures because they provide information sharing througout the life-cycle of structures and support close communication between different project stages. Systematic and well-organized data play a fundamental role for the effective maintenance of subway tunnel. In this paper, 3D information models for maintenance of BIM-based subway tunnel structures are developed. Standard classifications for the maintenance and construction information classification system were adopted. A classification system based on construction information classification system was built considering procedures of maintenance work. It provides optimization and standardization of the work flow for the maintenance of subway structures by applying information modeling processes instead of the current maintenance practices. It can effectively reduces the life cycle cost and time for the maintenance. The proposed system can be utilized for the maintenance history management to enhance current maintenance system.

A Study on the Deep Neural Network based Recognition Model for Space Debris Vision Tracking System (심층신경망 기반 우주파편 영상 추적시스템 인식모델에 대한 연구)

  • Lim, Seongmin;Kim, Jin-Hyung;Choi, Won-Sub;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.794-806
    • /
    • 2017
  • It is essential to protect the national space assets and space environment safely as a space development country from the continuously increasing space debris. And Active Debris Removal(ADR) is the most active way to solve this problem. In this paper, we studied the Artificial Neural Network(ANN) for a stable recognition model of vision-based space debris tracking system. We obtained the simulated image of the space environment by the KARICAT which is the ground-based space debris clearing satellite testbed developed by the Korea Aerospace Research Institute, and created the vector which encodes structure and color-based features of each object after image segmentation by depth discontinuity. The Feature Vector consists of 3D surface area, principle vector of point cloud, 2D shape and color information. We designed artificial neural network model based on the separated Feature Vector. In order to improve the performance of the artificial neural network, the model is divided according to the categories of the input feature vectors, and the ensemble technique is applied to each model. As a result, we confirmed the performance improvement of recognition model by ensemble technique.

A Study on the Automatic Detection of Railroad Power Lines Using LiDAR Data and RANSAC Algorithm (LiDAR 데이터와 RANSAC 알고리즘을 이용한 철도 전력선 자동탐지에 관한 연구)

  • Jeon, Wang Gyu;Choi, Byoung Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.331-339
    • /
    • 2013
  • LiDAR has been one of the widely used and important technologies for 3D modeling of ground surface and objects because of its ability to provide dense and accurate range measurement. The objective of this research is to develop a method for automatic detection and modeling of railroad power lines using high density LiDAR data and RANSAC algorithms. For detecting railroad power lines, multi-echoes properties of laser data and shape knowledge of railroad power lines were employed. Cuboid analysis for detecting seed line segments, tracking lines, connecting and labeling are the main processes. For modeling railroad power lines, iterative RANSAC and least square adjustment were carried out to estimate the lines parameters. The validation of the result is very challenging due to the difficulties in determining the actual references on the ground surface. Standard deviations of 8cm and 5cm for x-y and z coordinates, respectively are satisfactory outcomes. In case of completeness, the result of visual inspection shows that all the lines are detected and modeled well as compare with the original point clouds. The overall processes are fully automated and the methods manage any state of railroad wires efficiently.

Research for the Element to Analyze the Performance of Modern-Web-Browser Based Applications (모던 웹 브라우저(Modern-Web-Browser) 기반 애플리케이션 성능분석을 위한 요소 연구)

  • Park, Jin-tae;Kim, Hyun-gook;Moon, Il-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.278-281
    • /
    • 2018
  • The early Web technology was to show text information through a browser. However, as web technology advances, it is possible to show large amounts of multimedia data through browsers. Web technologies are being applied in a variety of fields such as sensor network, hardware control, and data collection and analysis for big data and AI services. As a result, the standard has been prepared for the Internet of Things, which typically controls a sensor via HTTP communication and provides information to users, by installing a web browser on the interface of the Internet of Things. In addition, the recent development of web-assembly enabled 3D objects, virtual/enhancing real-world content that could not be run in web browsers through a native language of C-class. Factors that evaluate the performance of existing Web applications include performance, network resources, and security. However, since there are many areas in which web applications are applied, it is time to revisit and review these factors. In this thesis, we will conduct an analysis of the factors that assess the performance of a web application. We intend to establish an indicator of the development of web-based applications by reviewing the analysis of each element, its main points, and its needs to be supplemented.

  • PDF

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

Interface Application of a Virtual Assistant Agent in an Immersive Virtual Environment (몰입형 가상환경에서 가상 보조 에이전트의 인터페이스 응용)

  • Giri Na;Jinmo Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In immersive virtual environments including mixed reality (MR) and virtual reality (VR), avatars or agents, which are virtual humans, are being studied and applied in various ways as factors that increase users' social presence. Recently, studies are being conducted to apply generative AI as an agent to improve user learning effects or suggest a collaborative environment in an immersive virtual environment. This study proposes a novel method for interface application of a virtual assistant agent (VAA) using OpenAI's ChatGPT in an immersive virtual environment including VR and MR. The proposed method consists of an information agent that responds to user queries and a control agent that controls virtual objects and environments according to user needs. We set up a development environment that integrates the Unity 3D engine, OpenAI, and packages and development tools for user participation in MR and VR. Additionally, we set up a workflow that leads from voice input to the creation of a question query to an answer query, or a control request query to a control script. Based on this, MR and VR experience environments were produced, and experiments to confirm the performance of VAA were divided into response time of information agent and accuracy of control agent. It was confirmed that the interface application of the proposed VAA can increase efficiency in simple and repetitive tasks along with user-friendly features. We present a novel direction for the interface application of an immersive virtual environment through the proposed VAA and clarify the discovered problems and limitations so far.

Georeferencing of Indoor Omni-Directional Images Acquired by a Rotating Line Camera (회전식 라인 카메라로 획득한 실내 전방위 영상의 지오레퍼런싱)

  • Oh, So-Jung;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.211-221
    • /
    • 2012
  • To utilize omni-directional images acquired by a rotating line camera for indoor spatial information services, we should register precisely the images with respect to an indoor coordinate system. In this study, we thus develop a georeferencing method to estimate the exterior orientation parameters of an omni-directional image - the position and attitude of the camera at the acquisition time. First, we derive the collinearity equations for the omni-directional image by geometrically modeling the rotating line camera. We then estimate the exterior orientation parameters using the collinearity equations with indoor control points. The experimental results from the application to real data indicate that the exterior orientation parameters is estimated with the precision of 1.4 mm and $0.05^{\circ}$ for the position and attitude, respectively. The residuals are within 3 and 10 pixels in horizontal and vertical directions, respectively. Particularly, the residuals in the vertical direction retain systematic errors mainly due to the lens distortion, which should be eliminated through a camera calibration process. Using omni-directional images georeferenced precisely with the proposed method, we can generate high resolution indoor 3D models and sophisticated augmented reality services based on the models.

Web viewer for sharing of prosthesis design between laboratory and clinic: Case report (웹뷰어를 이용한 기공실과 진료실 측 간의 보철물 설계 형태의 공유: 증례 보고)

  • Jang, Sung Won;Lee, Ho Jin;Kim, So-Yeun;Lee, Du-Hyeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.276-282
    • /
    • 2022
  • Close communication between clinicians and dental technicians is an important factor in providing successful prostheses. The exchange of opinions with laboratories has mainly been in the form of written prescriptions and a photos, but it has been reported that information transmission may be limited. Currently, as digital technology-based prosthesis fabrication is common, 3D image objects can be stored on the web and can be easily viewed through a mobile web browser. In this article, we introduce cases where the design of the prosthesis was improved by designing the prosthesis using CAD software and reviewing the prosthesis designed with the clinical side through a web viewer. Through this protocol, it was possible to improve the occlusal surface and crown contour, the opposing teeth condition, the size of the gingival embrasure, and the shape of pontic. The process of sharing, discussing, and modifying the prosthesis design with the clinician and technician through a web viewer contributes to reflecting the diversity of oral conditions and individualized needs, thereby helping to make functional and esthetic prostheses.

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.

Digital Hologram Compression Technique By Hybrid Video Coding (하이브리드 비디오 코팅에 의한 디지털 홀로그램 압축기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kang, Hoon-Jong;Lee, Seung-Hyun;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.29-40
    • /
    • 2005
  • According as base of digital hologram has been magnified, discussion of compression technology is expected as a international standard which defines the compression technique of 3D image and video has been progressed in form of 3DAV which is a part of MPEG. As we can identify in case of 3DAV, the coding technique has high possibility to be formed into the hybrid type which is a merged, refined, or mixid with the various previous technique. Therefore, we wish to present the relationship between various image/video coding techniques and digital hologram In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video and image. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. Finally the proposed hybrid compression algorithm is all of these methods. The tool for still image coding is JPEG2000, and the toots for video coding include various international compression algorithm such as MPEG-2, MPEG-4, and H.264 and various lossless compression algorithm. The proposed algorithm illustrated that it have better properties for reconstruction than the previous researches on far greater compression rate above from four times to eight times as much. Therefore we expect that the proposed technique for digital hologram coding is to be a good preceding research.