• Title/Summary/Keyword: 3D (3Dimensional)

Search Result 6,384, Processing Time 0.042 seconds

Technical Improvement Using a Three-Dimensional Video System for Laparoscopic Partial Nephrectomy

  • Komatsuda, Akari;Matsumoto, Kazuhiro;Miyajima, Akira;Kaneko, Gou;Mizuno, Ryuichi;Kikuchi, Eiji;Oya, Mototsugu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2475-2478
    • /
    • 2016
  • Background: Laparoscopic partial nephrectomy is one of the major surgical techniques for small renal masses. However, it is difficult to manage cutting and suturing procedures within acceptable time periods. To overcome this difficulty, we applied a three-dimensional (3D) video system with laparoscopic partial nephrectomy, and evaluated its utility. Materials and Methods: We retrospectively enrolled 31 patients who underwent laparoscopic partial nephrectomy between November 2009 and June 2014. A conventional two-dimensional (2D) video system was used in 20 patients, and a 3D video system in 11. Patient characteristics and video system type (2D or 3D) were recorded, and correlations with perioperative outcomes were analyzed. Results: Mean age of the patients was $55.8{\pm}12.4$, mean body mass index was $25.7{\pm}3.9kg/m^2$, mean tumor size was $2.0{\pm}0.8cm$, mean R.E.N.A.L nephrometry score was $6.9{\pm}1.9$, and clinical stage was T1a in all patients. There were no significant differences in operative time (p=0.348), pneumoperitoneum time (p=0.322), cutting time (p=0.493), estimated blood loss (p=0.335), and Clavien grade of >II complication rate (p=0.719) between the two groups. However, warm ischemic time was significantly shorter in the 3D group than the 2D group (16.1 min vs. 21.2min, p=0.021), which resulted from short suturing time (9.1 min vs. 15.2 min, p=0.008). No open conversion occurred in either group. Conclusions: A 3D video system allows the shortening of warm ischemic time in laparoscopic partial nephrectomy and thus may be useful in improving the procedure.

Energy Efficient Data Transmission Algorithms in 2D and 3D Underwater Wireless Sensor Networks (2차원 및 3차원 수중 센서 네트워크에서 에너지 효율적인 데이터전송 알고리즘)

  • Kim, Sung-Un;Park, Seon-Yeong;Cheon, Hyun-Soo;Kim, Kun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1657-1666
    • /
    • 2010
  • Underwater wireless sensor networks (UWSN) need stable efficient data transmission methods because of environmental characteristics such as limited energy resource, limited communication bandwidth, variable propagation delay and so on. In this paper, we explain an enhanced hybrid transmission method that uses a hexagon tessellation with an ideal cell size in a two-dimensional underwater wireless sensor network model (2D) that consists of fixed position sensors on the bottom of the ocean. We also propose an energy efficient sensing and communication coverage method for effective data transmission in a three-dimensional underwater wireless sensor network model (3D) that equips anchored sensors on the bottom of the ocean. Our simulation results show that proposed methods are more energy efficient than the existing methods for each model.

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

Three-dimensional Capsular Volume Measurements in Multidirectional Shoulder Instability

  • Jun, Yong Cheol;Moon, Young Lae;Elsayed, Moustafa I.;Lim, Jae Hwan;Cha, Dong Hyuk
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.3
    • /
    • pp.134-137
    • /
    • 2018
  • Background: In a previous study undertaken to quantify capsular volume in rotator cuff interval or axillary pouch, significant differences were found between controls and patients with instability. However, the results obtained were derived from two-dimensional cross sectional areas. In our study, we sought correlation between three-dimensional (3D) capsular volumes, as measured by magnetic resonance arthrography (MRA), and multidirectional instability (MDI) of the shoulder. Methods: The MRAs of 21 patients with MDI of the shoulder and 16 control cases with no instability were retrospectively reviewed. Capsular areas determined by MRA were translated into 3D volumes using 3D software Mimics ver. 16 (Materilise, Leuven, Belgium), and glenoid surface area was measured in axial and coronal MRA views. Then, the ratio between capsular volume and glenoid surface area was calculated, and evaluated with control group. Results: The ratio between 3D capsular volume and glenoid surface area was significantly increased in the MDI group ($3.59{\pm}0.83cm^3/cm^2$) compared to the control group ($2.53{\pm}0.62cm^3/cm^2$) (p<0.01). Conclusions: From these results, we could support that capsular volume enlargement play an important role in MDI of the shoulder using volume measurement.

A Study on Development of 3D Outsole Profile Scanner for Footwear Bonding Automation

  • Lho, Tae-Jung;Park, Pil-Gyu;Suh, Jong-Chul;Park, Dong-Joo;Ahn, Hee-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.131.3-131
    • /
    • 2001
  • A 2-dimensional scanner have been generally used for an office, but 3-dimensional one was seldom used in industry. A footwear bonding process has been operated manually by the skilled operators, but it is needed to be operated automatically. So we developed an automatic outsole profile scanner, which consists of PC, CCD camera, laser beam diode and moving mechanism, to scan automatically the 3-dimensional profile of outsole inner face to be bonded. Here the developed algorithm makes 2D image into 3D outsole profile. This profile will be used enough to bond automatically the outsole to something like leather or clothes.

  • PDF

Three-Dimensional Digital-Mold Modeling and Sand-Printing for Replication of Bronze Mirror

  • Jo, Young Hoon;Lee, Jungmin
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • To extend the application of digital technology to the replication of artifacts, meticulous details of the process and the diversity of three-dimensional (3D) printing output materials need to be supplemented. Thus, in this study, a bronze mirror with Hwangbichangcheon inscription was digitalized by 3D scanning, converted into a voxel model, and virtual conservation treatment was performed using a haptic device. Furthermore, the digital mold of the bronze mirror completed by Boolean modeling was printed using a 3D sand-printer. Such contactless replication based on digital technology reflects the stability, precision, expressivity, collectivity, durability, and economic feasibility of artifacts. Its application can be further extended to cultural products as well as such areas as education, exhibition, and research. It is expected to be in high demand for metal artifacts that require casting. If empirical studies through experimental research on casting are supplemented in the future, it could extend the application of digital technology-based contactless replication methods.

Linear accuracy of cone-beam computed tomography and a 3-dimensional facial scanning system: An anthropomorphic phantom study

  • Oh, Song Hee;Kang, Ju Hee;Seo, Yu-Kyeong;Lee, Sae Rom;Choi, Hwa-Young;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.111-119
    • /
    • 2018
  • Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality. Materials and Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold. Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements(P<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions. Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.

The Effectiveness of 3D FIESTA (Three Dimensional Fast Imaging Employing Steady-state Acquisition) MRI in Sudden Hearing Loss Patients (돌발성 난청 환자에서 3D FIESTA (three dimensional fast imaging employing steady-state acquisition) MRI의 유용성)

  • Cho, Jae-Hwan;Kim, Hyun-Ju;Park, Cheol-Soo
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.425-431
    • /
    • 2010
  • This study explored the effects and the effectiveness of the new method of 3D FIESTA by making quantitative comparison with the conventional 3D FSE method which is frequently employed on patients with sudden hearing loss in clinical settings. For this study, 3D FSE images acquired with 3.0T MR scanner and T2-weighted axial plane 3D FIESTA images were respectively taken from 40 patients diagnosed with Sensorineural Hearing Loss (SSHL). When obtaining those images, sagittal reconstructions oriented perpendicular to the nerve were performed in order to get sagittal images of both right and left internal auditory canal. The findings showed that both SNR and CNR were higher among the group to whom the 3D FIESTA method was applied than the group to whom the conventional 3D FSE method was applied.

A Study on the Fabrication of Various 3D Microstructures using Polymer Deposition System (폴리머 적층 시스템을 이용한 다양한 3 차원 미세 구조물 제작에 관한 연구)

  • Kim, Jong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.686-692
    • /
    • 2012
  • Solid free-form fabrication (SFF) technology was developed to fabricate three-dimensional (3D) scaffolds for tissue engineering (TE) applications. In this study, we developed a polymer deposition system (PDS) and created 3D microstructures using a bioresorbable polycaprolactone (PCL) polymer. Fabrication of 3D scaffolds by PDS requires a combination of several devices, including a heating system, dispenser, and motion controller. The system can process a polymer with extremely high precision by using a 200 ${\mu}m$ nozzle. Based on scanning electron microscope (SEM) images, both the line width and the piled line height were fine and uniform. Several 3D micro-structures, including the ANU pattern (a pattern named after Andong National University), $45^{\circ}$ pattern square, frame, cylindrical, triangular, cross-shaped, and hexagon, have been fabricated using the polymer deposition system.