Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.126-128
/
2021
MPEG(Moving Picture Experts Group) 비디오 그룹은 사용자에게 움직임 시차(motion parallax)를 제공하면서 3D 공간 내에서 임의의 위치와 방향의 시점(view)을 렌더링(rendering) 가능하게 하는 6DoF(Degree of Freedom)의 몰입형 비디오 부호화 표준인 MIV(MPEG Immersive Video) 표준화를 진행하고 있다. MIV 표준화 과정에서 참조 SW 인 TMIV(Test Model for Immersive Video)도 함께 개발하고 있으며 점진적으로 부호화 성능을 개선하고 있다. TMIV 는 여러 뷰로 구성된 방대한 크기의 6DoF 비디오를 압축하기 위하여 입력되는 뷰 비디오들 간의 중복성을 제거하고 남은 영역들은 각각 개별적인 패치(patch)로 만든 후 아틀라스에 패킹(packing)하여 부호화되는 화소수를 줄인다. 이때 아틀라스 비디오에 패킹된 패치들의 위치 정보를 메타데이터로 압축 비트열과 함께 전송하게 되며, 본 논문에서는 이러한 패킹 정보를 보다 효율적으로 표현하기 위한 방법을 제안한다. 제안방법은 기존 TMIV10.0 에 비해 약 10%의 메타데이터를 감소시키고 종단간 BD-rate 성능을 0.1% 향상시킨다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.193-196
/
2021
홀로그램(Hologram)은 3차원 물체에서 나오는 빛의 정보를 제어하는 기술이다. 현재는 컴퓨터 생성 홀로그램(CGH)으로 생성한 디지털 홀로그램에 관한 연구, 특히 물체에서 나오는 빛의 정보를 최대한 기록하고 재현하여 디지털 홀로그램의 해상도를 향상 시키려는 연구가 활발히 진행되고 있다. 이에 본 논문에서는 고해상도 홀로그램 영상을 얻기 위해 딥러닝 기반 초해상도(Super Resolution) 네트워크를 훈련 및 최적화하여, 저해상도 위상 홀로그램 영상으로부터 높은 화질의 홀로그램 영상을 재현하는 고해상도 위상 홀로그램 영상을 생성하는 것을 목표로 한다. 이때 위상 홀로그램 영상의 특성을 이용한 순환 손실 함수(Circular loss function)를 새롭게 제안하며, 기존의 이미지 초해상도 신경망 모델을 학습시킬 때 자주 사용하는 L1 손실 함수와 비교했을 때 약 0.13dB 정도의 성능 향상이 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.215-216
/
2020
Optical Flow는 컴퓨터 비전 분야의 많은 응용기술에 사용된다. 객체 탐지, 추적, 연속 영상 보간, 3D Reconstruction과 같은 최근에 활발히 연구되는 여러 분야에서 사용되는 기반 기술이다. 최근 딥러닝을 기반으로 한 다양한 연구가 활발히 진행되어 왔으며 높은 정확도를 보이고 있다. 이런 분야들은 많은 경우에 실시간 시스템에 적용되어 이미지로부터 정보를 연산한다. 본 논문은 MaskFlownet, SelFlow, LiteFlowNet2 등과 같은 높은 정확도를 가진 신경망 네트워크로 추정된 Optical Flow를 살펴본다. 각 신경망 네트워크로 얻어진 정확도를 비교하고 디스플레이 기술과 이미지 센서 기술의 발전으로 사용 수요가 많아진 고화질의 이미지를 실시간으로 처리하는 경우, 적용 가능한 Optical Flow의 성능을 분석하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.361-363
/
2020
기존의 지도 또는 길 찾기 기능을 사용 할 때 방향 정보를 직관적으로 제시해주는 네비게이션 구현을 목표로, 사용 지역을 캠퍼스 내로 국한시켜 증강현실을 이용한 네비게이션을 구현하였다. 본 애플리케이션 개발에는 Mapbox maps API, ARCore, Unity 3D Engine, Android studio를 사용하였다. 사용지역을 확대시켜 Mobile device 뿐만 아니라 자동차 앞 유리 디스플레이에 접목하여 보다 다양한 서비스 제공을 기대할 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.373-376
/
2020
현대인들의 인터넷 사용률이 지속적으로 증가함에 따라 소비자들은 오프라인 매장에서 의류를 구매하기보다 인터넷 쇼핑을 통한 구매를 선호하게 되었다. 그러나 온라인 구매로 인해 정확한 스타일 확인 불가 및 확신할 수 없는 사이즈로 큰 불편함을 겪고 있다. 따라서 최근 가장 떠오르는 기술 중 하나인 AR을 실생활에 적용하여 사용자가 매장에 가지 않고 집에서도 편하게 자신의 스타일링을 확인할 수 있도록 하는 AR 피팅룸을 구현하여 솔루션을 제안하고자 한다. 본 프로젝트에서는 3D 표현을 위해 Kinect Xbox 카메라를 사용하여 사용자의 신체정보를 추출한 후 unity와의 연동을 통해 사용자에게 편리함을 제공할 수 있는 AR-fitting 시스템을 설계하였다. 선택한 옷을 가상으로 입어 볼 수 있는 쇼룸 형태의 서비스를 제공하며 제스처 인식을 통해 보다 편리한 의류 선택 및 사이즈 조절 등을 가능하게 하였다. 또한, 사용자의 입력 정보에 따른 사이즈 측정 결과를 제공함으로써 사용자의 의류 구매를 보다 효과적으로 만들어 줄 수 있을 것이다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.75-77
/
2021
MPEG 비디오 그룹은 제한된 3D 공간 내에서 움직임 시차(motion parallax)를 제공하면서 원하는 시점(view)을 렌더링(rendering)하기 위한 표준으로 TMIV(Test Model for Immersive Video)라는 테스트 모델과 함께 효율적인 몰입형 비디오의 부호화를 위한 MIV(MPEG Immersive Video) 표준을 개발하고 있다. 몰입감 있는 시각적 경험을 제공하기 위해서는 많은 수의 시점 비디오가 필요하기 때문에 방대한 양의 비디오를 고효율로 압축하는 것이 불가피하다. TMIV 는 여러 개의 입력 시점 비디오를 소수의 아틀라스(atlas) 비디오로 변환하여 부호화되는 화소수를 줄이게 된다. 아틀라스는 선택된 소수의 기본 시점(basic view) 비디오와 기본 시점으로부터 합성할 수 없는 나머지 추가 시점(additional view) 비디오의 영역들을 패치(patch)로 만들어 패킹(packing)한 비디오이다. 본 논문에서는 아틀라스 비디오의 보다 효율적인 부호화를 위해서 패치 내에 생기는 작은 홀(hole)들을 채우는 기법을 제안한다. 제안기법은 기존 TMIV8.0 에 비해 1.2%의 BD-rate 이 향상된 성능을 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.337-339
/
2020
오디오 초 해상도 기술은 저 해상도의 오디오 신호를 이용하여 고 해상도의 오디오를 복원 또는 생성해 내는 기술이다. 본 기술 분야는 기존에 주파수 대역 확장, 인공 대역 확장 기술 등으로 연구되었으나, 최근 딥러닝 기술의 발전, 이미지 초 해상도 기술 연구 등에 힘입어 오디오 초 해상도 기술 이라는 이름으로 주로 연구되고 있다. 본 논문에서는 이러한 오디오 초 해상도 기술에 연구 동향에 대하여 설명하고, 기존의 논문 들에서 주로 다루고 있는 음성 데이터 베이스가 아닌 MedleyDB 음악 데이터 베이스를 활용하여 실험을 수행하였다. 실험은 4-폴드 교차 검증을 통해 수행되었으며, 실험 결과 제안하는 컨벌루션 신경망 구조 기반 오디오 초 해상도 기술은 입력 저해상도 오디오 대비 SNR 이 3.41 dB 향상됨을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.269-271
/
2020
In this letter, we propose a novel approach for stitching stereoscopic panoramas. When stitching stereoscopic panoramas, the amount of depth retrieved is the most important factor to pay attention for. Also, it is very crucial to deliver the two left and right panoramas with the right depth information to deliver good 3D perception. However, when stitching the two panoramas independently using the state-of-the-art algorithms and methods, we do still have some inconsistencies with the disparity map retrieved from the panoramas. To overcome this problem, we propose a method that modifies the latest conventional algorithm by making the two panoramas dependent of one another. This brings two panoramas with a much more consistent disparity map that lets users fully immerse into a comfortable stereoscopic vision.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.239-241
/
2022
MIV(MPEG Immersive Video) 표준은 제한된 3D 공간의 다양한 위치의 뷰(view)들을 효율적으로 압축하여 사용자에게 임의의 위치 및 방향에 대한 6 자유도(6DoF)의 몰입감을 제공한다. MIV 의 참조 소프트웨어인 TMIV(Test Model for Immersive Video)에서는 몰입감을 제공하기 위한 여러 시점의 입력 뷰들 간의 중복 영역을 제거하고 남은 영역들을 패치(patch)로 만들어 패킹(packing)한 아틀라스(atlas)를 생성하고 이를 압축 전송한다. 아틀라스 영상은 일반적인 영상 달리 많은 불연속성을 포함하고 있으며 이는 부호화 효율을 크게 저하시키다 본 논문에서는 아틀라스 영상의 부호화 손실을 줄이기 위한 신경망 기반의 후처리 필터링 기법을 제시한다. 제안기법은 기존의 TMIV 와 비교하여 아틀라스의 복원 화질 향상을 보여준다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.146-149
/
2022
기존 RDO(Rate Distortion Optimization) 기반 압축 방식은 압축 성능에 초점을 두기 때문에 영상 내 인지 특성이 무시될 수 있다. 따라서 RoI(Region of Interest)을 기반으로 압축률을 조절하는 연구가 고안[1, 2, 3, 4] 되었으며, HVS(Human Visual System) 관점에서 영상 내 중요한 부분에 대해 더 높은 품질로 영상을 압축하는 연구가 대부분이다. 최근 인공지능 기술이 발전함에 따라 지능형 영상 분석에 대한 수요가 증가하고 있으며, 이에 따라 머신 비전을 위한 영상 부호화 및 효율적인 전송에 대한 필요성이 대두되고 있다. 본 논문에서는 VVC(Versatile Video Coding)의 dQP(delta Quantization Parameter)를 활용하여 RoI(Region of Interest) 기반압축 방법을 제안하고, 두가지의 RoI 추출 방식을 소개한다. Detectron2 Faster R-CNN X101-FPN [5]의 첫번째 탐지기를 통해 후보 영역 기반 RoI 을 추출하고, 두번째 탐지기를 통해 객체 기반 RoI 을 추출하여, 영상 내 객체 부분과 비객체 부분으로 나누어 서로 다른 압축률로 압축을 수행하였으며, 이에 따른 성능을 비교하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.