• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.047 seconds

Applying 3D U-statistic method for modeling the iron mineralization in Baghak mine, central section of Sangan iron mines

  • Ghannadpour, Seyyed Saeed;Hezarkhani, Ardeshir;Golmohammadi, Abbas
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.262-272
    • /
    • 2018
  • The U-statistic method is one of the most important structural methods to separate the anomaly from background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, 3D U-statistic method has been applied for the first time through the three-dimensional (3D) modeling of an ore deposit. In order to achieve this purpose, 3D U-statistic is applied on the data (Fe grade) resulted from the drilling network in Baghak mine, central part of the Sangan iron mines (in Khorassan Razavi Province, Iran). Afterward, results from applying 3D U-statistic method are used for 3D modeling of the iron mineralization. Results show that the anomalous values are well separated from background so that the determined samples as anomalous are not dispersed and according to their positioning, denser areas of anomalous samples could be considered as anomaly areas. And also, final results (3D model of iron mineralization) show that output model using this method is compatible with designed model for mining operation. Moreover, seen that U-statistic method in addition for separating anomaly from background, could be very efficient for the 3D modeling of different ore type.

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.

Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %)/β-TCP (40 wt %) Scaffold (3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.371-377
    • /
    • 2014
  • In tissue engineering, a scaffold is a three-dimensional(3D) structure that serves as a template for regeneration the functions of damaged tissues or organs. Among materials for scaffolds, polycaprolactone(PCL) and ${\beta}$-tricalcium phosphate(${\beta}$-TCP) are biodegradable and biocompatible. In this study, we fabricated 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %), and pure ${\beta}$-TCP scaffolds by a multi-head scaffold fabrication system. Scaffolds with a pore size of $600{\pm}20{\mu}m$ was observed by scanning electron microscopy. The effects of 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) and pure ${\beta}$-TCP scaffolds were analyzed by evaluating their mechanical characteristics. In addition, in an in-vitro study using osteoblast-like saos-2 cells, we confirmed the effects of 3D scaffolds on cellular behaviors such as cell adhesion and proliferation. In summary, the 3D blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) scaffold was found to be suitable for human cancellous bone in terms of its the compressive strength, biocompatibility, and osteoconductivity. Thus, blending PCL and ${\beta}$-TCP could be a promising approach for fabricating 3D scaffolds for effective bone regeneration.

Controlled Growth of Layered Silver Stearate on 2D and 3D Surfaces

  • Lee, Seung-Joon;Han, Sang-Woo;Kim, Kwan
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.517-522
    • /
    • 2003
  • This investigation confirms that silver stearate consists of an infinite-sheet, two-dimensional, nonmolecular layered structure. Scanning electron microscopy, X-ray diffraction, and infrared spectroscopy reveal the following: plate-like morphology is identified from the SEM image, XRD peaks can be indexed to the (0k0) reflections of a layered structure, and infrared peaks show that alkyl chains are present in an all-trans conformational state with little or no significant gauche population. Based on these structural characteristics, we demonstrate that silver stearate, a prototype of layered organic-inorganic hybrid material, can be grown not only in a designed two-dimensional pattern but also in three-dimensionally ordered ways by using carboxyl-group terminated nanoparticles as a template.

  • PDF

Torque Analysis of Axial Flux PM Type Eddy Current Brake (영구자석형 와전류제동기의 토크 특성 해석)

  • Shin, Hyeon-Jae;Choi, Jang-Young;Cho, Han-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1019-1020
    • /
    • 2011
  • This paper deals with torque analysis of axial flux permanent magnet (AFPM) type eddy current brake (ECB) based on analytical field computation. On the basis of a magnetic vector potential and a two-dimensional (2-D) polar coordinate system, analytical solutions for normal and tangential flux density due to permanent magnet (PM) considering eddy current effect are obtained. And then, using derived analytical field solutions, braking torque and normal force characteristics according to rotor speed are also predicted. A three-dimensional (3-D) finite element (FE) analysis is employed to confirm the validity of analyses.

  • PDF

Compressible Boundary Layer Stability Analysis With Parabolized Stability Equations

  • Bing, Gao;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.110-119
    • /
    • 2006
  • An accurate and cost efficient method PSE is used for the stability analysis of 2D or 3D compressible boundary layers. A highly accurate finite difference PSE code has been developed at a general curvilinear coordinate system using an implicit marching procedure to deal with a broad range of transition predictions problems. Evolution of disturbances in compressible flat plate boundary layers are studied for free-stream Mach numbers ranging from 0 to 1.5. The effect of mean-flow nonparallelism is found to be weak on two dimensional waves and strong on three dimensional waves. The maximum amplification rate increases monotonically with Mach number. The present PSE solutions are compared with previous numerical investigations and experimental results and are found to be in good agreement.

  • PDF

Comparison of 12/8 and 6/4 Switched Reluctance Motor : Noise and Vibration Aspects (12/8과 6/4 스위치드 릴럭턴스 모터의 비교 : 노이즈 및 진동)

  • Choi, Da-Woon;Li, Jian;Son, Dong-Hyuk;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.850-851
    • /
    • 2008
  • This paper compares and investigates the vibration and noise characteristics through simulations of 12/8 and 6/4 switched reluctance motors (SRMs). The radial force which is the main source of vibration is computed from two-dimensional(2D) transient magnetic finite element analysis (FEA) and compared in both time and frequency domain. At the same output power, the radial force of 6/4 SRM is found to be more than two times as that one of 12/8 SRM. Three-dimensional structural finite-element analysis (3D FEA) is used to study the mechanical characteristics. It can be concluded from static structural analysis that the maximum total deformation could be reduced to 1/26 if the motor is designed with 12/8 structure instead of 6/4. The dominant vibration modes are verified by modal analysis.

  • PDF

A New Method for Color Feature Representation of Color Image in Content-Based Image Retrieval - 2D Projection Maps

  • Ha, Seok-Wun
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.123-127
    • /
    • 2004
  • The most popular technique for image retrieval in a heterogeneous collection of color images is the comparison of images based on their color histogram. The color histogram describes the distribution of colors in the color space of a color image. In the most image retrieval systems, the color histogram is used to compute similarities between the query image and all the images in a database. But, small changes in the resolution, scaling, and illumination may cause important modifications of the color histogram, and so two color images may be considered to be very different from each other even though they have completely related semantics. A new method of color feature representation based on the 3-dimensional RGB color map is proposed to improve the defects of the color histogram. The proposed method is based on the three 2-dimensional projection map evaluated by projecting the RGB color space on the RG, GB, and BR surfaces. The experimental results reveal that the proposed is less sensitive to small changes in the scene and that achieve higher retrieval performances than the traditional color histogram.

Natural frequency error estimation for 3D brick elements

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.137-148
    • /
    • 1997
  • In computing eigenvalues for a large finite element system it has been observed that the eigenvalue extractors produce eigenvectors that are in some sense more accurate than their corresponding eigenvalues. From this observation the paper uses a patch type technique based on the eigenvector for one mesh quality to provide an eigenvalue error indicator. Tests show this indicator to be both accurate and reliable. This technique was first observed by Stephen and Steven for an error estimation for buckling and natural frequency of beams and two dimensional in-plane and out-of-plane structures. This paper produces and error indicator for the more difficult problem of three dimensional brick elements.

Development of a Consistent General Order Nodal Method for Solving the Three-Dimensional, Multigroup, Static Neutron Diffusion Equation

  • Kim, H.D.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.34-39
    • /
    • 1996
  • A consistent general order nodal method for solving the 3-D neutron diffusion equation in (x-y-z) geometry has ben derived by using a weighted integral technique and expanding the spatial variables by the Legendre orthogonal series function. The equation set derived can be converted into any order nodal schemes. It forms a compact system for general order of nodal moments. The method utilizes the analytic solutions of the transverse-integrated quasi -one dimensional equations and a consistent expansion for the spatial variables so that it renders the use of an approximation for the transverse leakages no necessary. Thus, we can expect extremely accurate solutions and the solution would converge exactly when the mesh width is decreased or the approximation order is increased since the equation set is consistent mathematically.

  • PDF