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Compressible Boundary Layer Stability Analysis With
Parabolized Stability Equations

Gao Bing', Park.S.0.2

Department of Aerospace Engineering, School of Mechanical and Aerospace Systems, KAIST

An accurate and cost efficient method PSE is used for the stability analysis of 2D or 3D compressible
boundary layers. A highly accurate finite difference PSE code has been developed at a general curvilinear
coordinate system using an implicit marching procedure to deal with a broad range of transition predictions
problems. Evolution of disturbances in compressible flat plate boundary layers are studied for free-stream Mach
numbers ranging from 0 to 15. The effect of meanflow nonparallelism is found to be weak on two dimensional
waves ‘and strong on three dimensional waves. The maximum amplification rate increases monotonically with Mach
number. The present PSE solutions are compared with previous numerical investigations and experimental results

and are found to be in good agreement.
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1. Introduction

The subject of compressible boundary-layer stability has
attracted a great deal of interest in the past few years due to
its importance in understanding the onset of transition in
high-speed flows and providing some theoretical background
for laminar flow control techniques[1]. The objective of the
present work is the development of an accurate and cost
efficient way for investigating the stability of 2D or 3D
boundary layers such as flat plate, finite wings, cone, or
bodies at angle of attack.

Most investigations of compressible linear stability have
employed what is known as the "quasi-parallel" approach
whereby the growth of the boundary layer is ignored and the
linear Navier-Stokes equations are reduced to ordinary
differential equations by assuming a wave-like disturbance of
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the form. The linear ODE’s along with the homogeneous
boundary conditions constitute an eigenvalue problem, which
can be solved by standard eigenvalue techniques. For a given
flow, this eigenvalue approach can be applied "locally” at
various locations along the body in order to obtain an idea
about overall growth of disturbances and to correlate with
transition location using empirical method, such as "
method. But its usefulness is limited by inaccuracies due to
the parallel flow approximation. Another limitation is that the
assumption of local parallel flow which cuts the physical
connection between the disturbances at different locations and
introduces ambiguity in the calculation of N factors.. Different
strategies have been. employed to reconnect the solution at
different locations[2][3],and evaluations of their merits are still
inconclusive.

Another transition prediction tool is the direct numerical
simulations (DNS) using full Navier-Stokes equations. But it
requires far too much computer power. Moreover, they have
been obtained only for very simple geometries such as flat
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plate. Therefore, it is not appropriate for studying the
transition over the complex geometries{4].

With the introduction of the PSE concept by Herbert,
Bertolotti and Chang, it become possible to directly track
physically connected disturbances along the marching direction

with little computer power over the complex geometries.

2 Problem Formulations

2.1 Disturbance equations

Both the compressible linear stability equations (LST) and
the parabolized stability equations (PSE) originate from the
compressible Navier-Stokes equations. The gas is assumed to
be perfect The three
Navier-Stokes equations in Cartesian(z’,y",2z") coordinate
,where * denotes dimensional quantities, are [5]

Newtonian  gas. dimensional
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where u'is the velocity vector, o is the density,p’is the
pressure, 7'is the temperature, B'is the gas constant,c,is the
specific heat at thermal
conductivity, u'is the first coefficient of viscosity, and A" is

the second coefficient of viscosity. The viscous dissipation

constant  pressure,k'is  the

function, ®is given as
" =x1(v u’)2+%(Vu‘+Vu‘") (B5)
First we use Cartesian coordinate system(z',y",z").All
the lengths are assumed scaled by a reference length
L= vz [u., , velocity byu. , density by p,,, pressure

byp.u.?, and time by L'/u_,and other variables by their

corresponding boundary layer edge values. The instantaneous

non-dimensional values of velocities,u,v,w, pressure p

temperature 7, density p, may be represented as
u—7/+1~“;~—1}+{1 w= Witw
p=P+p;T=T+ Tp=p+p (6
u= ,l.l,+[l,,/\ A Nk=k+k
Substituting (6) into the non-dimensional form of the
governing yields the

equations linearized perturbation
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The disturbance equations are recast using a completely
general transformation of the form, which permits the
non-orthogonal coordinate system.

¢=¢&(zy.2)in=nlz.y,2):(=((z,9,2) ®)

where£,n,¢ are streamwise, normal, and spanwise direction
respectively.

Finally, we obtain the disturbance equations in the
following form,

72,72 o
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2.2 Full three-dimensional linear PSE equations

Direct solution of the disturbance equations (9) is referred
to as the direct numerical simulation (DNS) method. DNS
requires a significant amount of computational time even for
a simple linear case. Here a more efficient approximate
solution to the disturbance equation is more desirable.

The disturbance equations are hyperbolic in time for the
convection terms (inviscid part). When we consider only the
spatial derivatives, it is elliptic in the streamwise direction

due to two reasons. First, the streamwise viscous term V,,
allows any disturbances to be diffused upstream. Second, and
more importantly, the convection term in the streamwise
direction makes the upstream propagation of acoustic waves
possible. One way to parabolize the disturbance equations and
make the marching solution feasible is to neglect the viscous
diffusion terms along the streamwise direction and prohibit
the upstream wave propagation either by dropping the
lefi-running characteristics or suppressing some part of the
streamwise pressure gradient, as it is dome in the PNS
approach. But direct application of the parabolizing procedure
used in the PNS approach for mean flow computations to the
disturbance equations would not capture the flow physics due
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to the suppression of the wave propagation along the
left-running characteristics[6].

For compressible stability problems, the disturbances are
essentially unsteady waves propagating across the whole
boundary layer and the amplitudes of these waves reach their
maxima near the critical layer located between the wall and
the boundary layer edge. These instability waves undergo a
“fast-oscillation"(phase change") as they evolve along the flow
direction. It is valuable to decompose the disturbances into a
fast-oscillatory wave part and a slowly varying shape function
because we can keep the ellipticity for the wave part while
parabolizing the governing equations for the shape function. It
is assumed that the disturbance vector @, for an instability
wave with frequency w and a spanwise wave number 3 and
a streamwise wave number, can be expressed as

¢(£77l Cat) W(&T]v )CXP[ (£,<xt)] (10)
where
= wale) = 2860 = % an

From (11), the wave number must satisfy the imotational
condition.
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Substitute (10) and (11) into the equations (9), it gives

equation (13)

Tor 399 7,00 =00
+A—+BL+ O
D¢ 266 3”2 o 2 2 (13)
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da a8
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A=A-2%aB—~ifV,
B= B—ia V;,,—- B Vm.
C= C-iaV— 2BV,
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We note here that matrices A4,B C.D have contributions
from both inviscid and viscous terms, and thus contain terms
of order one and of order 1/R,(Ris the reference Reynolds
number R, =u_ L' /V.).

While matrices Vi, V,,, Vo Vi, Vi Vy are solely due to
viscous diffusion and are of order O(1/R,).We also assume
the shape function is changed slowly along the streamwise
direction and spanwise direction , whose derivatives along
both directions have an order of O(1/R)). So after

neglecting all the terms, whose orders are O(1/R?), we have

y Oy s AL A 7 )
sz+A8§+BE+C—5C— o (14)

2.3 Quasi-3D linear PSE equations
If we just consider 2D mean flow, the disturbance will be
quasi-3D. So the disturbance vector ¢ can be expressed as

$EMGt)=v(EnexplibEGt)] (15)
where
R et i (16)

The streamwise wavenumber o is only function of &The
spanwise wavenumber 3 is kept constant when disturbance is
marching downstream.

Substitute (15) and (16) into the equations (9), after
neglecting all the terms order of O(1/R?) .it gives

L
D¢p+Aa§+BE V,,aqz (17"

where
D=—iwltiaA+ifC+ D+ Vol + Vol

= Vo V= Vi Vi Vi

In this paper, we will concentrate on quasi-3D disturbance

and test the characteristic of PSE and make preparation for
full-3D stability research on 3D mean flow in the future.

2.4 Boundary conditions
The solution of (14) and (17) requires proper boundary

conditions in the wall-normal direction. We apply the
homogeneous Dirichlet conditions at wall
u=0, v=0, w=0, 7=0 at y=0 (18)

At the free-stream
u—0, 0—0, w—0, 70 at y—oo
The temperature boundary condition at wall is reasonable



HRAAGHF L)

H 2 EHY 113

because the disturbance's frequency is much greater than the
thermal response time of the wall.

2.5 The closed Equations of PSE
In the full 3D PSE equation (12) and (14), they include

when a constant spanwise wave number 8 and frequency w
are given. So the PSE system is not closed. The hypothesis
the PSE is derived is the slowly changed shape function, and
its derivative in streamwise and spanwise direction order of
O(1/R,) How to make this hypothesis feasible will constitute
the closed equation. Herbert suggested a norm condition that
is both physically and mathematically meaningful.

For quasi-3D disturbance, the closed equation is

f n({n‘%g—+ {)T%w%ﬁ%)dn =0 (20)

For full 3D disturbance, it needs another equation at
spanwise direction.

L BU |, B0 |~ 0w
/Q(UT;C‘ ’I)TB—C""’!UT;C-)CM:O (21)

This choice makes the total kinetic energy of the shape
functions independent of £ or ¢. The total kinetic energy is

B= [ (P +IoF +1aPlan
2

The growth of the disturbance energy is absorbed into the
phase functiong.

3 Numerical Methods

In the streamwise direction, we use the implicit backward
Euler method. In the wall normal direction, we use fourth
order finite difference method[5]. The determining factor in
choosing the streamwise schemes is stability. In the wall
normal direction, because the critical layer moves away from
the wall towards the edge of the boundary layer, the grid
distributions suitable at certain Mach number must be chosen
carefully. In order to avoid to use artificial pressure boundary
conditions, we use one-side difference which does not involve
the wall points to approximate the first derivative of pressure.

Here we express general quasi-3D PSE equations (17)
into computation domain (¢&,7)
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Here, in order to be convenient, we write (22) as
o0 9 _ 8%

+ A+ Bl =V 23
Do o TP Vor 23
The discretized equations can be writtten as
(1) For J=2
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where m, =1, m, =0 for component u, v, w, T ;m, =0,
my =1 for component p

Chang et al. pointed out that the PSE equations are only
“nearly parabolic"due to the streamwise pressure gradient term
inherited form the original Navier- Stokes equation. Numerical
instability similar to that observed in PNS will occur if one
attempt to solve PSE by using a small enough marching step
size[6]. Li and Malik [7] use Fourier analysis to prove the
existence of numerical instability and quantify the numerical
instability bound, which is that the minimum step size is
greater than the inverse of the real part of the streamwise
wave number. This step-size restriction can be overcome by
dropping thedo/d¢ term from the governing equations. The
effect of this term on solution accuracy is negligible for
Blasius flow but not so for rotating-disk flow. In order to
keep the accuracy of PSE because of removing this term, we
can assume do/df=10 locally and take & as step-function.

The iteration procedure is following,

(1) Assumeda/d{=0 at i+1 step

(2) Give a pguessed valueo;,,, and evaluate PSE
coefficient matrix D,A,B, V at i+] step

(3) Solve the values, ., using implicit backward Euler
scheme.

(4) Update the o, ,using new ¢, based on the closed
equations.

(5) Check if of%,—af,, <e. If yes,i=i+1, if no, go
back to step 1

4 Mean Flow Computation

In order to verify PSE procedure, the flat plate flow is
first tested. The mean flow of flat plate is obtained by the
coupled laminar boundary layer code using Falkner-Skan
transformation[8],which is suitable for the stability calculation.
The code used here is written for large variation of properties
and use a fourth order polynomial approximation to get the
coefficients of specific heat, viscosity and the conductivity,
which was given by least

squares interpolation of

experimental data between the temperature of 100K and '

1600K. .

The mean flow is calculated under two conditions: one is
that the specific heat c, is constant; the other is that the
specific heat is changed with temperature. It is very obvious
that the difference is large as the Mach number is increased.

One can anticipate that in supersonic flows a change in
growth rate of ten percent or more due to the thermodynamic
approximations could easily pollute the measurements of
nonparallel effects. So it is important to get an accurate value
of properties especially at high Mach number.

-A— Bertolotti

| o [
AAAAOAO

T u
00 02 04 (L} 08 10

Fig. 4.1 Mean flow calculation at different Mach number at
constant specific heat

00 0.‘2 04 08 08 10
Ule

Fig. 4.2 Mean flow calculation at different Mach number at
variable specific heat

The following figures will give the profiles of mean flow
at M=1.5 calculated by mean flow code.
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Fig 4.3 Streamwise velocity profile of flat plate at M=1.5
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Fig 4.4 Density profile of flat plate at M=1.5

140 ~0 Mean flow code
—A— Berbolott
1354 Mach=1.5
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Fig 4.5 Temperature profile of flat plate at M=1.5

5 Initial conditions

We can give the solution obtained under the parallel flow
approximation as initial conditions, however, the modification
due to the basic-flow non-parallelism is sufficient to cause
transients in the marching solution that are objectionably
large[9]. We follow the procedure of Bertolotti[9] and expand
¢, and mean flow in a Taylor series locally and insert the
expansions into PSE equations and closed equations. We then
observe that order O(1)and O{z)terms must independently
sum to zero and then use Newton-Raphson iteration to solve
the initial equations.
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In order to test the method, it is first used at the parallel
flow calculation to find unstable modes. The present results
are seen to be consistent with results of Malik and Bertolotti.
The symboly denotes the growth rate, c denotes the wave

number.
M =1.5,R =800
F=40,=00
os0 o8 "
. - JS & E
aa © Present
A Bertolotti
4
O
0.02 4
o ;o) ,
El 0 1 2
c=ola

Fig.5.1 Spectrum of eigenvalues, spatial growth, parallel
flow,2D disturbance.
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M=L5,R=m
® F=40,8=012
0% &0 o Present
o) 4 Bertolotti
y oo o
Q@
-0.02 s a
a5,
s
0034 %A
&
-0.04 2 -
1 ° 1
c=ala

Fig.5.2 Spectrum of eigenvalues, spatial growth, parallel
flow,3D disturbance.

(1) Test 1

Mach=1.5 §=0.0,F=40,R=800, T, =311K
Bertolotti:y = 0.00149166, w,”a, =0.46859714
Present: y=0.00143199, w, o, =0.46758739

(2) Test 2

Mich=15, =012, F=40, R=800,7,,, =311K
Bertolotti: y=0.00201235, w o, = 0.47794974

Present:  y=0.00279985, w0, =0.47257223

(3) Test 3

Much =45, 3=00, F=1533, R=1500,7,,, =1100K

» “stag

Malik: v=0.00249034, o, = 0.25341578

Present: -y=0.00240035, o =0.25101562

We can find that the method of Taylor expansion is
accurate to get initial unstable eigenvalues.

The PSE has a property that can recover correct
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eigenvalue and eigenfunctions as the marching process
proceeds downstream even if incorrect initial conditions which
do not depart too much from the correct solution are given.
We -test this property by calculating the followiing example:
Mach=1.5,F=10°(2nv_f/2,),R=400. We sct the mean
flow is frozen(fixed for all x locations) and the mean normal
velocity component is set to zero. We disturb the initial
condition largely, and then carry out PSE procedure. The
results are shown in Fig.5.3. It can be concluded that the
PSE equations can recovery the correct solution as it marches
downstream. Second, any imperfect initial conditions result in
transients in the marching solution.

oo0sd ~ & 1.6284577€05
. s
.
0004 = .ﬁ—_—_
.
£ ooos] e
»
& ooot0+
200154
-
ommo] °
W0 60 m0  tm 1m0 o 160
R
001151
~
001104
ap
amasj
. .
Eoowo{ *
g L & N ——
g 00005 '. K
L
00080 §
-
oooes
40 60 B0 1000 1200 40 160

Fig.5.3. Effect of incorrect initial conditions on PSE solution
for a Mach 1.5 parallel mean flow at R=400.

6 Results and Discussion

6.1 Measures of physical growth

In the parallel flow approximation, all physical quantities
grow or decay according to the eigenvalue of Orr-Sommerfeld
equation in exactly the same way. In nonparallel basic flow,
the growth and phase variation of some physical quantity ¢
depends on o, ¥, and possibly the y derivatives of W. The
physical growth rate is defined as the logarithmic derivative

- 144
Lirir (24)

where, the division by ¢ renders the result independent of

the magnitude of ¢. Substitution of (16) into (24) gives

=i ot (25)
— .1
ar=ar—z$% (%)

Bertolotti found that the measurement of the streamwise

change of wu, to be a good indicator for the growth of

max

disturbance. Measured growth data based on w, are
independent of the traversed path of the sensor and avoid the
need to determine the exact height of the location above the
plate. Another good indicator is the maximum mass flux.

6.2 PSE results of two dimensional disturbances
In the study of three-dimensional waves we introduce the
parameter
b=p+ 10°/R, @0
which is proportional to the dimensional wave number in
spanwise direction. The division by R, renders b independent
of the length. The dimensional
wavenumber remains constants as the TS wave is convected

reference spanwise
downstream.

Figure 6.1-6.3 display the growth rates at various Mach
numbers for a two-dimensional wave at F=40 according to
Bertolotti' parameters. The measurement of growth rate based
on the maximum mass flux is presented. The nonparallel
growth rate is larger than parallel results at M=0.02, but the
situation is reversed when Mach number is increased. At
M=1.0 and M=1.5, the nonparallel growth rate is smaller than
the parallel results. For two-dimensional disturbances the
nonparallelism seems to stabilize the flow as the Mach
number is increased.

00074 © PresentPSE M=0.02]
4 Bertolotti parallel - 0490 o
0.008 -} 8 £
OA 2
0.005 -3 rd
a0 2
2 0004} & °
g 20 o
g 0.003 a0 -]
=3 e o
© 002 2 ‘o
2° °©
6.00% - a 2
a° 2
0.000 ] g

Y T T T T T T T
600 700 800 900 1000 1100 1200 1300 1400

Figure 6.1 growth rates vs R at F=40,b=0, Tstag=311k, M=0.02
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soos0 Figure 6.5 Amplitude factor vs R at F=40,b=0, Tstag=311k,
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Figure 6.2 growth rates vs R at F=40,b=0, Tstag=311k, M=1.0 e A R "SR~ ae N
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Figure 6.3 growth rates vs R at F=40,b=0,Tstag=311k, M=1.5
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Figure 6.4 Amplitude factor vs R at F=40,b=0, Tstag=311k,
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Figure 6.6 Amplitude factor vs R at F=40,b=0, Tstag=311k,
M=1.3

The following figure is a comparison with the two
dimensional modes reported in El-Hady&Nayfeh[10].

00012 x o=0
3% 08y
xo a
0.0008 - 0% 8
Xc a
°a
$ 00004 °
< o ©
S 0.0000]
[} x" a
0.0004 o &
s 4 Present PSE(velocity)
%a X EL-Hady
-0.0008 © Present PSE(masshow)

T 14 ¥ — T v
400 450 500 550 600 650 700 7S50 800 850

R

Fig.6.7 Growth rates vs R at F=40,M=1.6,Tstag=311K.
Comparison with multiple scales data of EL-Hady

6.3 PSE results of three dimensional disturbance

Figures 6.8-6.9 display the growth rates at various
Mach numbers for a three-dimensional wave at F=40,b=0.15
according to Bertolotti's parameters. It can be found that the
effecct of nonparallelism on stability is larger at
three-dimensional wave than at two dimensional wave.
Furthermore, the larger the Mach number, the larger the
effect of the nonparallelism.
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Fig.6.8 Growth rate vs R at F=40,b=0, Tstag=311k,

M=0.02, b=0.15
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Fig.6.9 Growth rate vs R at F=40,b=0, Tstag=311k, M=1.0,

b=0.15
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Fig.6.10 Growth rate vs R at F=40,b=0, Tstag=311k, M=1.5,

b=0.15
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Fig.6.11 Growth rates vs R at F=40,M=1.6,Tstag=311K.
Comparison with multiple scales data of EL-Hady

7 Conclusions

Linear compressible boundary layer stability is studied by
using the PSE approach. The goveming equations are solved
by first-order backward difference for the streamwise
derivatives while wall-normal direction is discretized by
fourth-order difference, which uses one-side difference which
does not involve the wall points to approximate the first
derivative of pressure.

The effect of mean-flow nenparallelism is found to be
weak on two dimensional waves and strong on three
dimensional waves. As Mach number is increased, the
nonparallel effect is increased. The present PSE results are in
good agreement with multiple scales data.

The test of flat plate indicates that PSE is a physically
meaningful  tool to research stability with little computer
power. The non-orthogonal coordinate system is helpful for
our future work to extend PSE to complex geometries, such
as hump, dip or cone at angle of attack.
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