• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.04 seconds

In vivo 3-dimensional Kinematics of Cubitus Valgus after Non-united Lateral Humeral Condyle Fracture

  • Kim, Eugene;Park, Se-Jin;Lee, Ho-Seok;Park, Jai-Hyung;Park, Jong Kuen;Ha, Sang Hoon;Murase, Tsuyoshi;Sugamoto, Kazuomi
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Background: Nonunion of lateral humeral condyle fracture causes cubitus valgus deformity. Although corrective osteotomy or osteosynthesis can be considered, there are controversies regarding its treatment. To evaluate elbow joint biomechanics in non-united lateral humeral condyle fractures, we analyzed the motion of elbow joint and pseudo-joint via in vivo three-dimensional (3D) kinematics, using 3D images obtained by computed tomography (CT) scan. Methods: Eight non-united lateral humeral condyle fractures with cubitus valgus and 8 normal elbows were evaluated in this study. CT scan was performed at 3 different elbow positions (full flexion, $90^{\circ}$ flexion and full extension). With bone surface model, 3D elbow motion was reconstructed. We calculated the axis of rotation in both the normal and non-united joints, as well as the rotational movement of the ulno-humeral joint and pseudo-joint of non-united lateral condyle in 3D space from full extension to full flexion. Results: Ulno-humeral joint moved to the varus on the coronal plane during flexion, $25.45^{\circ}$ in the non-united cubitus valgus group and $-2.03^{\circ}$ in normal group, with statistically significant difference. Moreover, it moved to rotate externally on the axial plane $-26.75^{\circ}$ in the non-united cubitus valgus group and $-3.09^{\circ}$ in the normal group, with statistical significance. Movement of the pseudo-joint of fragment of lateral condyle showed irregular pattern. Conclusions: The non-united cubitus valgus group moved to the varus with external rotation during elbow flexion. The pseudo-joint showed a diverse and irregular motion. In vivo 3D motion analysis for the non-united cubitus valgus could be helpful to evaluate its kinematics.

Computational study of the wave propagation in three-dimensional human cardiac tissue

  • Kwon, Soon-Sung;Im, Uk-Bin;Kim, Ki-Woong;Lee, Yong-Ho;Shim, Eun-Bo
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • We developed a three dimensional cardiac tissue model based on human cardiac cell and mono-domain approximation for action potential propagation. The human myocyte model proposed by ten Tusscher et al. (TNNP model) (2004) for cell electrophysiology and a mono-domain method for electric wave propagation are used to simulate the cardiac tissue propagation mechanism using a finite element method. To delineate non-homogeneity across cardiac tissue layer, we used three types of cardiac cell models. Ansiotropic effect of action potential propagation is also considered in this study. In this 3D anisotropic cardiac tissue with three cell layers, we generated a reentrant wave using S1-S2 protocol. Computational results showed that the reentrant wave was affected by the anisotropic properties of the cells. To test the reentrant wave under pathological state, we simulated a hypertopic model with non-excitable fibroblasts in stochastic manner. Compared with normal tissue, the hypertropic tissue result showed another center of reentrant wave, indicating that the wave pattern can be more easily changed from regular with a concentric focus to irregular multi-focused reentrant waves in case of patients with hypertrophy.

  • PDF

Design and Implementation of 3D Facial Aesthetic Surgery System (3D 얼굴 성형 제작 시스템 구현)

  • Cho, Sae-Hong
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.149-155
    • /
    • 2008
  • This paper is a study and implementation of 3D facial aesthetic surgery system using 3D graphic technology. First, this system shows 3D shape of face which is close to the real face of human by using Pre-Processing and Face-Part-Making modules. Three-dimensional Facial Aesthetic Surgery System is also designed and implemented. Each controller controls the degree of changes for the corresponding part of face. The implemented 3D Facial Aesthetic Surgery System in this paper shows more accuracy, effectiveness and satisfaction in compare with 2D Facial Aesthetic Surgery System that is used in the hospital.

  • PDF

Temporal Anti-aliasing of a Stereoscopic 3D Video

  • Kim, Wook-Joong;Kim, Seong-Dae;Hur, Nam-Ho;Kim, Jin-Woong
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Frequency domain analysis is a fundamental procedure for understanding the characteristics of visual data. Several studies have been conducted with 2D videos, but analysis of stereoscopic 3D videos is rarely carried out. In this paper, we derive the Fourier transform of a simplified 3D video signal and analyze how a 3D video is influenced by disparity and motion in terms of temporal aliasing. It is already known that object motion affects temporal frequency characteristics of a time-varying image sequence. In our analysis, we show that a 3D video is influenced not only by motion but also by disparity. Based on this conclusion, we present a temporal anti-aliasing filter for a 3D video. Since the human process of depth perception mainly determines the quality of a reproduced 3D image, 2D image processing techniques are not directly applicable to 3D images. The analysis presented in this paper will be useful for reducing undesirable visual artifacts in 3D video as well as for assisting the development of relevant technologies.

  • PDF

A Study on Improvement of the Use and Quality Control for New GNSS RO Satellite Data in Korean Integrated Model (한국형모델의 신규 GNSS RO 자료 활용과 품질검사 개선에 관한 연구)

  • Kim, Eun-Hee;Jo, Youngsoon;Lee, Eunhee;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.251-265
    • /
    • 2021
  • This study examined the impact of assimilating the bending angle (BA) obtained via the global navigation satellite system radio occultation (GNSS RO) of the three new satellites (KOMPSAT-5, FY-3C, and FY-3D) on analyses and forecasts of a numerical weather prediction model. Numerical data assimilation experiments were performed using a three-dimensional variational data assimilation system in the Korean Integrated Model (KIM) at a 25-km horizontal resolution for August 2019. Three experiments were designed to select the height and quality control thresholds using the data. A comparison of the data with an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) integrated forecast system showed a clear positive impact of BA assimilation in the Southern Hemisphere tropospheric temperature and stratospheric wind compared with that without the assimilation of the three new satellites. The impact of new data in the upper atmosphere was compared with observations using the infrared atmospheric sounding interferometer (IASI). Overall, high volume GNSS RO data helps reduce the RMSE quantitatively in analytical and predictive fields. The analysis and forecasting performance of the upper temperature and wind were improved in the Southern and Northern Hemispheres.

A Preliminary Study on Structure of the Wooden Printing Blocks in Japan - Based on the 3D Measurement Method - (일본 판목의 구조에 대한 기초연구 - 3D 계측을 통한 조사를 중심으로 -)

  • Ando, Mariko;Ryu, Sungwook;Imazu, Setsuo
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.11-16
    • /
    • 2017
  • This study reviews the structure of wooden printing blocks in Japan, focusing on the blocks as three-dimensional objects. Inspection is more effective three-dimensionally than two-dimensionally, and for the first time in wooden printing block research, the study uses a 3D CT scanner and a high-resolution 3D digitizer. The 3D CT scanner examines cross sections of the blocks and identifies their grain and contents, including insects surviving within them. The 3D digitizer enables observation of objects up to 0.02 mm; this allows detailed collection of block surface information, which is difficult to identify with a conventional microscope.

Structure Assembling Method for 3D Puzzle System (3차원 퍼즐 시스템을 위한 구조물 조립 기법)

  • Kim, Jin-Mo;Cho, Hyung-Je
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • With the rapid development of computer hardware and invention of various game-related technologies, the quality of games has been greatly improved and the genres of games have been diversified. Yet, in comparison, puzzle games have held to the past simple way of games, which has only led to a depression of the puzzle game market. This paper is the first attempt to overcome limits of the current puzzle games, by finding a breakthrough in three-dimensional puzzle games. In order to describe a realistic puzzle assembly in a three-dimensional puzzle game, this paper aimed to design a structure assembly technique made up of three steps that used a proper process to handle structure suitable to assembly, an elaborate way of collisions between individual objects and a physical structure. Through this technique, we intend to show in a simple experiment that it is possible to minimize the calculation cost in the assembly process and at the same time to achieve an elaborate puzzle assembly between structures.

  • PDF

Development of 3D Addressing Data Model Based on the IndoorGML (IndoorGML 기반 입체주소 데이터 모델 개발)

  • Kim, JI Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.591-598
    • /
    • 2020
  • The all revision of the Road Name Address Act, which contains the contents to be used by expanding the road name address as a means of indicationg the location, has been resloved by the National Assembly. Addresses will be assigned to large-sized facilities (3D mixed-use complex spaces). Here, the 3D (Three-dimensional) address is assigned an indoor path section in the inner passage, dividing the section at intervals. The 3D address will be built on the address information map. For 3D address, data should be built and managed for a 3D complex space(indoor space). Therefore, in this study, the object of the 3D address is defined based on the address conceptual model defined in the international standard, and the 3D address data model is proposed based on IndoorGML. To this, it is proposed as a method of mapping the Core and Navigation module of IndoorGML so that the entity of the 3D address can be expressed in IndoorGML. This study has a limitation in designing a 3D address data model only, but it is meaningful that it suggested a standard for constructing 3D address data in the future.

3-D Simulation of T-Shaped Electrode and Comparison of Results with Experiments

  • Shin, Yeong-Kyo;Hwang, Tae-Su;Kang, Seok-Dong;Park, Hun-Gun;Ryu, Jae-Hwa;Kim, Hyun-Chul;Shin, Seong-Won;Lee, Jae-Koo
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.13-18
    • /
    • 2002
  • Numerical simulation is one of the most useful tools to study gas discharge phenomena that occur in alternating current plasma display panel (AC-PDP) cell. Most PDP cell simulations have been performed for two-dimensional cell, is cross-section along the address electrode. We developed a three-dimensional PDP simulator and applied it to a T-shaped electrode cell in order to show the effects of sustain electrode shape that cannot be included in two-dimensional simulation. The dependence of power consumption on electrode shape and area in the simulation showed the same trend as experiment.

Interconnection structures of bilevel microstriplines using electromagnetic coupling (전자기적 결합을 이용한 이층 마이크로스트립선로의 접속 구조)

  • 박기동;이현진;임영석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.47-55
    • /
    • 1995
  • Proximity-coupled open-end microstrip interconnections in bilevel planar structures are investigated through three-dimensional finite-difference time-domain(3D-FDTD) method. Three types of EMC (electromagnetically coupled) microstriplines are considered, collinear lines, transverse lines and modified EMC structure. From the analyzed results, it is found that these EMC interconnections have the coupling coefficient enough to interconnect lines in bilevel structures over a broad-band. The computed results of the modified EMC structure was compared with measurement from physical model and the computed results of via hole interconnection.

  • PDF