DOI QR코드

DOI QR Code

In vivo 3-dimensional Kinematics of Cubitus Valgus after Non-united Lateral Humeral Condyle Fracture

  • Kim, Eugene (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Park, Se-Jin (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Lee, Ho-Seok (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Park, Jai-Hyung (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Park, Jong Kuen (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Ha, Sang Hoon (Department of Orthopaedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Murase, Tsuyoshi (Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine) ;
  • Sugamoto, Kazuomi (Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine)
  • Received : 2018.05.31
  • Accepted : 2018.07.27
  • Published : 2018.09.01

Abstract

Background: Nonunion of lateral humeral condyle fracture causes cubitus valgus deformity. Although corrective osteotomy or osteosynthesis can be considered, there are controversies regarding its treatment. To evaluate elbow joint biomechanics in non-united lateral humeral condyle fractures, we analyzed the motion of elbow joint and pseudo-joint via in vivo three-dimensional (3D) kinematics, using 3D images obtained by computed tomography (CT) scan. Methods: Eight non-united lateral humeral condyle fractures with cubitus valgus and 8 normal elbows were evaluated in this study. CT scan was performed at 3 different elbow positions (full flexion, $90^{\circ}$ flexion and full extension). With bone surface model, 3D elbow motion was reconstructed. We calculated the axis of rotation in both the normal and non-united joints, as well as the rotational movement of the ulno-humeral joint and pseudo-joint of non-united lateral condyle in 3D space from full extension to full flexion. Results: Ulno-humeral joint moved to the varus on the coronal plane during flexion, $25.45^{\circ}$ in the non-united cubitus valgus group and $-2.03^{\circ}$ in normal group, with statistically significant difference. Moreover, it moved to rotate externally on the axial plane $-26.75^{\circ}$ in the non-united cubitus valgus group and $-3.09^{\circ}$ in the normal group, with statistical significance. Movement of the pseudo-joint of fragment of lateral condyle showed irregular pattern. Conclusions: The non-united cubitus valgus group moved to the varus with external rotation during elbow flexion. The pseudo-joint showed a diverse and irregular motion. In vivo 3D motion analysis for the non-united cubitus valgus could be helpful to evaluate its kinematics.

Keywords

References

  1. Morrey BF, Chao EY. Passive motion of the elbow joint. J Bone Joint Surg Am. 1976;58(4):501-8. https://doi.org/10.2106/00004623-197658040-00013
  2. McDonald CP, Moutzouros V, Bey MJ. Measuring dynamic invivo elbow kinematics: description of technique and estimation of accuracy. J Biomech Eng. 2012;134(12):124502. https://doi.org/10.1115/1.4007951
  3. Bottlang M, Madey SM, Steyers CM, Marsh JL, Brown TD. Assessment of elbow joint kinematics in passive motion by electromagnetic motion tracking. J Orthop Res. 2000;18(2):195-202. https://doi.org/10.1002/jor.1100180206
  4. Kim E, Park SJ, Jeong HJ, et al. In vivo 3D kinematics of axis of rotation in malunited monteggia fracture dislocation. Clin Shoulder Elbow. 2014;17(1):25-30. https://doi.org/10.5397/cise.2014.17.1.25
  5. Kim E, Moritomo H, Murase T, Masatomi T, Miyake J, Sugamoto K. Three-dimensional analysis of acute plastic bowing deformity of ulna in radial head dislocation or radial shaft fracture using a computerized simulation system. J Shoulder Elbow Surg. 2012;21(12):1644-50. https://doi.org/10.1016/j.jse.2011.12.006
  6. Eamsobhana P, Kaewpornsawan K. Should we repair nonunion of the lateral humeral condyle in children? Int Orthop. 2015;39(8):1579-85. https://doi.org/10.1007/s00264-015-2805-8
  7. Toh S, Tsubo K, Nishikawa S, Inoue S, Nakamura R, Harata S. Long-standing nonunion of fractures of the lateral humeral condyle. J Bone Joint Surg Am. 2002;84(4):593-8. https://doi.org/10.2106/00004623-200204000-00013
  8. Smith FM. An eighty-four year follow-up on a patient with ununited fracture of the lateral condyle of the humerus. A case report. J Bone Joint Surg Am. 1973;55(2):378-80. https://doi.org/10.2106/00004623-197355020-00015
  9. Kalenak A. Ununited fracture of the lateral condyle of the humerus. A 50 year follow-up. Clin Orthop Relat Res. 1977;(124):181-3.
  10. Piskin A, Tomak Y, Sen C, Tomak L. The management of cubitus varus and valgus using the Ilizarov method. J Bone Joint Surg Br. 2007;89(12):1615-9.
  11. Toh S, Tsubo K, Nishikawa S, Inoue S, Nakamura R, Narita S. Osteosynthesis for nonunion of the lateral humeral condyle. Clin Orthop Relat Res. 2002;(405):230-41.
  12. Shimada K, Masada K, Tada K, Yamamoto T. Osteosynthesis for the treatment of non-union of the lateral humeral condyle in children. J Bone Joint Surg Am. 1997;79(2):234-40. https://doi.org/10.2106/00004623-199702000-00011
  13. Agarwal A, Qureshi NA, Gupta N, Verma I, Pandey DK. Management of neglected lateral condyle fractures of humerus in children: a retrospective study. Indian J Orthop. 2012;46(6):698-704. https://doi.org/10.4103/0019-5413.104221
  14. Papandrea R, Waters PM. Posttraumatic reconstruction of the elbow in the pediatric patient. Clin Orthop Relat Res. 2000;(370):115-26.
  15. Amis AA, Miller JH. The elbow. Clin Rheum Dis. 1982;8(3):571-93.
  16. Park S, Kim E. Estimation of carrying angle based on CT images in preoperative surgical planning for cubitus deformities. Acta Med Okayama. 2009;63(6):359-65.
  17. Wu G, van der Helm FC, Veeger HE, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981-92. https://doi.org/10.1016/j.jbiomech.2004.05.042
  18. Vanderpool DW, Chalmers J, Lamb DW, Whiston TB. Peripheral compression lesions of the ulnar nerve. J Bone Joint Surg Br. 1968;50(4):792-803.
  19. Moorehead EL. Old untreated fracture of external condyle of humerus. Factors influencing choice of treatment. Surg Clin. 1919;3:987-9.
  20. Masada K, Kawai H, Kawabata H, Masatomi T, Tsuyuguchi Y, Yamamoto K. Osteosynthesis for old, established non-union of the lateral condyle of the humerus. J Bone Joint Surg Am. 1990;72(1):32-40. https://doi.org/10.2106/00004623-199072010-00006
  21. Miyake J, Shimada K, Masatomi T. Osteosynthesis for longstanding nonunion of the lateral humeral condyle in adults. J Shoulder Elbow Surg. 2010;19(7):958-64. https://doi.org/10.1016/j.jse.2010.03.002
  22. Gong MQ, Huang XW, Wang C, et al. Management of chronic neglected lateral condyle elbow non-union in adults: functional results of a cohort study and a proposed treatment algorithm. Int Orthop. 2017;41(1):157-64. https://doi.org/10.1007/s00264-016-3276-2
  23. London JT. Kinematics of the elbow. J Bone Joint Surg Am. 1981;63(4):529-35. https://doi.org/10.2106/00004623-198163040-00003
  24. Tanaka S, An KN, Morrey BF. Kinematics and laxity of ulnohumeral joint under valgus-varus stress. J Musculoskelet Res. 1998;2(1):45-54. https://doi.org/10.1142/S021895779800007X
  25. Horn BD, Herman MJ, Crisci K, Pizzutillo PD, MacEwen GD. Fractures of the lateral humeral condyle: role of the cartilage hinge in fracture stability. J Pediatr Orthop. 2002;22(1):8-11. https://doi.org/10.1097/01241398-200201000-00003
  26. McKee MD. Displaced fractures of the lateral epicondyle of the humerus and posterolateral rotatory instability of the elbow. J Bone Joint Surg Am. 2003;85(6):1165-6; author reply 1166.
  27. Bozentka DJ. Cubital tunnel syndrome pathophysiology. Clin Orthop Relat Res. 1998;(351):90-4.
  28. Ochi K, Horiuchi Y, Morisue H, Harato K, Tanikawa H, Okubo M. Association between the disease severity and extraneural pressure induced by maximum elbow flexion in patients with cubital tunnel syndrome. J Plast Surg Hand Surg. 2013;47(3):219-23. https://doi.org/10.3109/2000656X.2012.747962
  29. Murase T, Oka K, Moritomo H, Goto A, Yoshikawa H, Sugamoto K. Three-dimensional corrective osteotomy of malunited fractures of the upper extremity with use of a computer simulation system. J Bone Joint Surg Am. 2008;90(11):2375-89. https://doi.org/10.2106/JBJS.G.01299
  30. Kim E, Lee S, Jeong HJ, et al. Three-dimensional scapular dyskinesis in hook-plated acromioclavicular dislocation including hook motion. J Shoulder Elbow Surg. 2018;27(6):1117-24. https://doi.org/10.1016/j.jse.2017.12.019