• Title/Summary/Keyword: 3-unknown plate theory

Search Result 39, Processing Time 0.02 seconds

A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate

  • Tounsi, Abdelouahed;Houari, Mohammed Sid Ahmed;Bessaim, Aicha
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.547-565
    • /
    • 2016
  • In this work a new 3-unknown non-polynomial shear deformation theory for the buckling and vibration analyses of functionally graded material (FGM) sandwich plates is presented. The present theory accounts for non-linear in plane displacement and constant transverse displacement through the plate thickness, complies with plate surface boundary conditions, and in this manner a shear correction factor is not required. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only 3 unknowns as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT). The plate properties are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton's principle. Analytical solutions of natural frequency and critical buckling load for functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the present non-polynomial plate theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate

  • Belabed, Zakaria;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.103-115
    • /
    • 2018
  • In this work, a simple but accurate hyperbolic plate theory for the free vibration analysis of functionally graded material (FGM) sandwich plates is developed. The significant feature of this formulation is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the classical plate theory (CPT), instead of 5 as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous core and the sandwich with the homogeneous face sheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. Numerical results of the present theory are compared with the CPT, FSDT, order shear deformation theories (HSDTs), and 3D solutions. Verification studies show that the proposed theory is not only accurate and simple in solving the free vibration behaviour of FGM sandwich plates, but also comparable with the higher-order shear deformation theories which contain more number of unknowns.

Static analysis of functionally graded sandwich plates with porosities

  • Keddouri, Ahemd;Hadji, Lazreg;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.155-177
    • /
    • 2019
  • In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate with new definition of porosity distribution taking into account composition and the scheme of the sandwich plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Material properties of FGM layers are assumed to vary continuously across the plate thickness according to either power-law or sigmoid function in terms of the volume fractions of the constituents. The face layers are considered to be FG across each face thickness while the core is made of a ceramic homogeneous layer. Governing equations are derived from the principle of virtual displacements. The closed-form solution of a simply supported rectangular plate subjected to sinusoidal loading has been obtained by using the Navier method. Numerical results are presented to show the effect of the material distribution, the sandwich plate geometry and the porosity on the deflections and stresses of FG sandwich plates. The validity of the present theory is investigated by comparing some of the present results with other published results.

Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.297-314
    • /
    • 2019
  • Dynamic stability of a porous metal foam nano-dimension plate on elastic substrate exposed to bi-axial time-dependent forces has been studied via a novel 3-variable plate theory. Various pore contents based on uniform and non-uniform models have been introduced. The presented plate model contains smaller number of field variables with shear deformation verification. Hamilton's principle will be utilized to deduce the governing equations. Next, the equations have been defined in the context of Mathieu-Hill equation. Correctness of presented methodology has been verified by comparison of derived results with previous data. Impacts of static and dynamical force coefficients, non-local coefficient, foundation coefficients, pore distributions and boundary edges on stability regions of metal foam nanoscale plates will be studied.

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates

  • Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bessaim, Aicha;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.257-276
    • /
    • 2016
  • In this paper, a new simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded (FG) plates is developed. The significant feature of this formulation is that, in addition to including a sinusoidal variation of transverse shear strains through the thickness of the plate, it deals with only three unknowns as the classical plate theory (CPT), instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The accuracy of the present solutions is verified by comparing the obtained results with those predicted by classical theory, first-order shear deformation theory, and higher-order shear deformation theory. Verification studies show that the proposed theory is not only accurate and simple in solving the bending and free vibration behaviours of FG plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

A novel four-unknown quasi-3D shear deformation theory for functionally graded plates

  • Hebbar, Nabil;Bourada, Mohamed;Sekkal, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.599-611
    • /
    • 2018
  • In this article a four unknown quasi-3D shear deformation theory for the bending analysis of functionally graded (FG) plates is developed. The advantage of this theory is that, in addition to introducing the thickness stretching impact (${\varepsilon}_z{\neq}0$), the displacement field is modeled with only four variables, which is even less than the first order shear deformation theory (FSDT). The principle of virtual work is utilized to determine the governing equations. The obtained numerical results from the proposed theory are compared with the CPT, FSDT, and other quasi-3D HSDTs.

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.

A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations

  • Hachemi, Houari;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.717-726
    • /
    • 2017
  • In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.